ABOUT THE CAD-CAM ENGINEERING FOR LUXURY UPHOLSTERED FURNITURE

Lustun Liana Marta*, Lucae Codruta’, Cheregi Gabriel’, Galiş Ioan,’ Derecichei Laura,*

*University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048 Oradea, Romania

Abstract

Design and engineering luxury upholstered furniture uses modern soft CAD-CAM manufacturing to ensure quality and increase labor productivity.

Key words: Luxury upholstery furniture, CAD-CAM

INTRODUCTION

The CAD-CAM assumes aided design product such as: 2D, 3D structure determination in assemblies and parts, classification benchmarks, estimate calculated in real time, machining.

Imag. 1. Luxury upholstered sofa made in CAD-CAM system.

MATERIAL AND METHOD

Research on developing CAD-CAM design and manufacturing luxury upholstered furniture held in SC JRL EDITION ARAD in the months May-June 2014.
We illustrate in this article design a timber frame sofas 3 seater, 2D and 3D drawings. He watched representation system changes in real-time which appear to change size parts to customer or other reasons. Dimensional variation of the product should also be reflected in the nomenclature of items.
Imag. 4. 3 seater sofa.

Imag. 5. Side sofa

This represents tabular landmark names, sizes gross net size, the number of landmarks. Any modification of a subset must be found in its constituent parts dimensions.
The novelty of our research is reflected in the automatic calculation of the dimensions of subassemblies and parts in CAD-CAM application designed by us. It enables real-time design, at the request of the customer, the size of parts being fixed instantly.

Also, parts can be processed dimensional and shape more accurately by CAD-CAM machining is possible in sub-degree angle.

RESULTS AND DISCUSSIONS

Were obtained si3D more accurate 2D drafting nomenclature possibility landmarks in real time in order to launch the product in manufacturing upholstered.

CONCLUSIONS

The research performed were obtained 2D and 3D drawings more accurate lists of active parts in real time devices were removed and patterns and have obtained more precise processing resulted in savings of expensive material.

REFERENCES

4. Curtu, I. Radu, I., 1972, Aspecte ale dinamicii masinilor unelte pentru aschierarea lemnului Universitatea Transilvania Brașov
5. Dogaru, V., 1985, Bazele tăierii lemnului și a materialelor lemnoaie, Editura Tehnica București
7. Fetea, M., 2013, Proiectarea asistată de calculator a obiectelor 2D folosind programul AutoCAD, Universitatea din Oradea
10. Tutorial – TypeEdit 3D
11. http://www.stanleytools.com/default.asp?CATEGORY=HT%5FTAPES%5FSTANLEY&TYP EPARAM=PRODUCT&PARTNUMBER=30496&SDesc=5m%2F16%26%3B+x+3%26%2334%3B+Stanley%26%23174%3B+Tape+Rule+%28Metric+2FEnglish+Scale%29