	PROCEDURA									
Universitatea din	pentru iniţierea, aprobarea,	COD:	4	5	6	7	8	9		
Oradea	monitorizareași evaluarea periodică a programelor de studii	SEAQ PE – U. 01	Aprobat în şedinţa de Senat din data:							
	Studii			()3.0	3.20	014			

Anexa 6

COURSE SYLLABUS

1. Information on the study programme

1.1 Academic institution	UNIVERSITY OF ORADEA
1.2 Faculty	FACULTY OF ENVIRONMENTAL PROTECTION
1.3 Department	ENVIRONMENTAL ENGINEERING
1.4 Field of study	ENVIRONMENTAL ENGINEERING
1.5 Cycle of study	BACHELOR
1.6 Study programme/Qualification	ENGINEERING OF BIOTECHNICAL AND
	ECOLOGY SYSTEMS

2. Information on the discipline

2.1 Name of discip	line				ENVIRONMEN	ITAI	L CHEMISTRY	
2.2 Course coordina	ator		Le	cture	r PhD.GHERGHEL	EŞ C	CARMEN GEORGETA	
2.3 Laboratory/Proj	ject c	oordinator	Le	cture	r PhD.GHERGHEL	EŞ C	CARMEN GEORGETA	
2.4 Year of study	II	2.5 Semest	er III 2.6 Type of C 2.7 Regi		2.7 Regime of discipline	0		
					evaluation			

(C) Compulsory; (O) Optional; (E) Elective

3. Total estimate time (hours per semester of didactic activities)

3.1 Number of hours per week	4	out of w	hich: 3.2	28	out of which 3.3	28	
		course			seminar/laboratory/project		
3.4 Total hours in the	56	out of w	hich: 3.5	28	out of which 3.6	28	
curriculum		course			seminar/laboratory/project		
Time allotment							
						hours	
Study assisted by manual, course support, bibliography and notes						15	
Additional documentation in the li	ibrary/	on specia	lised electr	onic pla	tforms and in the field	20	
Preparation of seminars/laboratori	es/ top	oics/report	s, portfolio	s and es	says	15	
Tutorship						2	
Examinations						4	
Other activities						0	
3.7 Total hours of individual stu	dy	56					
3.9 Total hours per semester		112					
3.10 Number of credits		3					

	PROCEDURA									
Universitatea din	pentru inițierea, aprobarea,	COD:	4	5	6	7	8	9		
Oradea	monitorizareași evaluarea periodică a programelor de studii	9E – U. 01	Aprobat în şedinţa de Senat din data:							
					ມວ.ບ	J.Z	014			

4. Prerequisites (where appropriate)

4.1 Curriculum	Chemistry
4.2 Competences	Cognitive skills: concepts related to chemistry and biology related to
	environmental factors
	Action skills: information and documentation skills, group work,
	information technology use and data-processing skills; putting into practice
	the knowledge accumulated

5. Conditions (where appropriate)

5.1. related to course	Video Projector, computer
5.2. related to	Equipment and laboratory reagents specific to laboratory work,
seminar/laboratory/ project	computer

6. Spec	cific competences acquired
Professional competences	 C1. Management and resolution of specific environmental issues for sustainable development C2. Identifying the best technical and technological solutions for implementing professional projects for engineering and environmental protection C3. Analysis of technical solutions necessary to prevent, mitigate and eliminate adverse environmental phenomena
Transversal competences	 CT1. Identifying roles and responsibilities in a multidisciplinary team and application techniques and effective work relationships within the team CT2. Effective use of information sources and communication resources and training aided (portals, Internet, specialized software, databases, online courses, etc.) both in Romanian and in an international language

7.Objectives of discipline (coming from the specific competences acquired

7.1 General objective	Acquiring fundamental notions of analyticalchemistry,							
	chemicalequilibriumandclassicalmethodologicalprinciples of analysis:							
	titrimetryandgravimetry.							
	Learningtheprinciples of opticalmethods of analysis in ordertoform a							
	solid theoreticalbasisthatallowsstudentscorrectinterpretations in							
	determining major, minor components or traces of complex materials.							
7.2 Specific objectives	The student will acquire skills to be able to perform an objective and							
	rigorous review in environmental protection domain, to be able to							
	conduct a technological process and correct interpretation of laboratory							
	tests so that the technological process is more efficient.							

	PROCEDURA								
Universitatea dinpentru iniţierea, aprobarea, monitorizareaşi evaluarea periodică a programelor de studii	COD:	4	5	6	7	8	9		
	monitorizareași evaluarea periodică a programelor de studii	9E – U. 01	Aprobat în şedinţa de Senat din data: 03.03.2014						

8. Content*/

8.1 Course	Methods of teaching	No. of hours/Remarks
1. Introduction. Definition, purpose, role andclassifications of analyticalchemistry. Field of operation. Chemicalequilibria. Reactionsused in analyticalchemistry. Ionic reactions, molecular reactions. Selectivityandsensitivity of analyticalreactions. Chemicalanalysis. Systematics of qualitativeanalysis. Stages of quantitativeanalysis	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
2. Solutions. Electrolytic dissociation. The theory of strong electrolytes. Activity and activity coefficient; ionic strength. Dissociation of weak electrolytes. Dissociation constants.	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
3. Acid-base equilibria. Calculation of [H3O ⁺] in solutions of strong acids and bases, weak acids and bases, hydrolysis salts, mixtures of acids and mixtures of bases. Calculation of the equilibrium concentration of other species at known pH. Buffer solutions.	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
4. Acid-base titrimetry. Acid-base titration curves. Indicators. Titration errors. Applications.	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
5. Redox balances. Redox potential. Normal potential, seemingly normal. Calculation of the equilibrium constant, potential and ratio of concentrations to the equivalence point. Redox titrations. Redox titration curves. Indicators. Titration errors. Applications.	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works

	PROCEDURA									
Universitatea din	pentru inițierea, aprobarea,	COD:	4	5	6	7	8	9		
Oradea	monitorizareași evaluarea periodică a programelor de studii	SEAQ PE – U. 01	Aprobat în şedinţa de Senat din data:							
					J3.U	3.Z	U14			

		The fraud during examination implies to exclude the student from examination and proposal for expulsion
6. Complexationbalances. Stability constant, instability. Apparentformation constant. Titrimetryby complex formationreactions. Titrationcurves. Complexonometricindicators. Titrationerror. Applications.	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
 7. Precipitationequilibria. Solubility product. Solubility. Factorsinfluencingprecipitation. Fractionalprecipitation. Titrimetrybyprecipitationreactions. Titrationcurves. Indicators. Titrationerror. Applications. 	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
8. Gravimetric analysis. Precipitationformationandprocessing in gravimetric analysis	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
9. Inorganicand organic precipitatingreagents. Precipitationcontamination. Precipitation in homogeneoussolutions	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
10. Opticalmethods of analysis. Classifications, spectral domains.Atomic absorptionspectroscopy. Theoreticalbases of themethod. Equipment. Applications	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works

		PROCEDURA							
	Universitatea din	pentru inițierea, aprobarea,	COD:	4	5	6	7	8	9
Oradea	monitorizareași evaluarea periodică a programelor de studii	SEAQ PE – U. 01	Aprobat în şedinţa de Senat din data:						
Oradea	periodică a programelor de studii	PE – U. 01	Senat din dat 03.03.2014				data 014): -	

		The fraud during examination implies to exclude the student from examination and proposal for expulsion
11. Molecular absorptionspectroscopy. Classifications. The law of lightabsorption. Molecular emissionmethods. The theory of chemiluminescence, fluorescence, phosphorescence, variablesthataffectphotoluminescence. Equipment. Applications.	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
 Atomic emissionspectroscopy. Spectral sources, qualitativeandquantitativeanalysis. Equipment. Applications. X-rayspectroscopy. Obtaining X-rays, X- rayspectrum. X-rayanalysismethods. Applications. 	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
13. Nephelometryandturbidimetry. Theoreticalbases. Equipment. Applications.	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion
14. Refractometry, polarimetry, rotary opticalscattering, circular dichroism. Generalities. Equipment. Applications	Interactive lecture, logic presentation, deductive explanation, and constructive conversation	2 The student's presence during the course is optional but recommended. The presence of the student in the examination is conditioned by participation in the laboratory works The fraud during examination implies to exclude the student from examination and proposal for expulsion

Bibliography

- 1. R. Kellner, J.M. Mermet, M. Otto și Widmer, H.M., eds., Analyticalchemistry, Wiley-VCH, Verlag, Germany, 1998.
- 2. D. Harvey, Modern analyticalchemistry, Mac Graw Hill, 2000.
- 3. D. Barcelo (ed.), Comprehensive analyticalchemistry, Modern instrumental analysis (vol. 47), Ahuja,

	PROCEDURA									
Universitatea	pentru iniţierea, aprobarea,		4	5	6	7	8	9		
Oradea	periodică a programelor de	SEAQ PE – U. 01	Aprobat în şedinţa de Senat din data:							
	studii		03.03.2				014			

- S., Jespersen, N., eds., Elsevier, 2006.
- 4. R. A. Meyers (ed.), Encyclopaedia of analyticalchemistry, John Wiley Sons, Chicester, 2000.
- 5. D. Harvey, Modern analyticalchemistry, Mac Graw Hill, 2000.
- 6. T. Onofrei, Probleme de analiză titrimetrică, Ed. Tehnopress, Iași, 2004.
- 7. D.A. Skoog, Principles of Instrumental Analysis 4th Ed., Sounders College Publishing, New York, 1992.
- 8. Al. Nacu, R. Mocanu, T. Onofrei, Chimie analitică și analiză instrumentală, Manual de lucrări practice, vol. II, I.P. Iași, 1980.

8.2 Seminar	of teaching	No. of hours/
		Remarks
Labor protection. Introductory notions in qualitative	-	-
chemical analysis.y	D 11 1 1	
2. Separation of cations by analytical groups (eg HCl group).	Problem-solving,	2
Identification reactions for cations.	explanation, modeling	
3. Identification reactions for anions. Introductorynotions in	Problem-solving,	2
quantitativeanalysis. Analyticalbalance	explanation, modeling	
4. Titrimetricanalysis. Acid-basetitrations. Alkalimetry.	Problem-solving,	2
Preparationandstandardization of NaOHsolution ~ 0.1N.	explanation, modeling	
5.Acid-basetitrations. Acidimetry.	Problem-solving,	2
Preparationandstandardization of ~ 0.1N HClsolution.	explanation, modeling	
Problems		
6. Titrimetric determination of a sodium carbonate /	Problem-solving,	2
sodiumbicarbonatesolution or titrimetricanalysis of a	explanation, modeling	
mixture of NaOHandsodiumcarbonate		
7. Titrimetrybyredoxreactions. Permanganometric titrations.	Problem-solving,	2
Preparationandstandardization of KMnO4 ~ 0.05N solution.	explanation, modeling	
Direct permanganometric determinations. Determination of		
iron.		
8. Titrationsby precipitate formation reactions.	Problem-solving,	2
Argentometric titrations. Determination of chlorides in water.	explanation, modeling	
9. Complexonometry titrations. Direct complex econometric	Problem-solving.	2
determinations. Determination of Ca / Mg ions.	explanation, modeling	_
10Gravimetric methods of analysis Gravimetric	Problem-solving	2
determination of iron Processingtheresults of gravimetric	explanation modeling	-
analysis	explanation, modeling	
11 Spectrophotometric titrations Determination of Cu (II)	Problem-solving	2
with Complexon III solution	explanation modeling	2
12Plotting an absorptionspectrum in VIZ (determination	Problem solving	2
of and	evolution modeling	L L
12 Superturn hetematric determinetion of mhear here in	Conversation	
15. Spectrophotometric determination of phosphorus in	Conversation	4
ineform of molybdenumblue. (Additionmethod)		
14. Applications	-	4

1.Alfa Xenia Lupea, Mirabela Padure, Carmen Ionescu – Elemente de biochimie și analiză a unor produse alimentare, Editura Universității din Oradea.

	PROCEDURA									
Universitatea din Oradea	pentru inițierea, aprobarea, monitorizareași evaluarea periodică a programelor de studii	COD: SEAQ PE – U. 01	4	5	6	7	8	9		
			Aprobat în şedinţa de Senat din data: 03 03 2014							
					5.0	J.Z	014			

* The content, respectively the number of hours allocated to each course / seminar / laboratory / project will be detailed during the 14 weeks of each semester of the academic year.

9. Corroboration of discipline content with the expectations of the epistemic community, professional associations and representative employers from the field corresponding to the study programme

- The content of the discipline is in line with what is done in other university centers in the country and abroad.
- The content of the discipline is found in the curriculum of the Biotechnical and Technological Systems Engineering specialization and from other university centers that have accredited these specializations..

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the final					
			grade					
10.4 Course	Evaluation of theoretical	Exam - oral test	100%					
	knowledge acquired							
10.5 Seminar	-	-	-					
10.6 Laboratory	-	-	-					
10.7 Project	project evaluation	Project presentation	100%					
10.8 Minimum standard of performance								
Minimum 7 - the project evaluation								
• Minimum 5 - exam								

Issuing date

Signature of course coordinator lecturer PhD.Ghergheles Carmen lecturer PhD.Ghergheles Carmen(i carmen g@yahoo.com)

Signature of laboratory coordinator (i carmen g@yahoo.com)

Date of approval in the department

Director of Department Signature Assistant professor PhD.eng.Laslo Vasile

(vasilelaslo@yahoo.com)

Dean signature Prof. PhD.eng. CHEREJI IOAN