Universitatea din Oradea

PROCEDURA pentru iniţierea, aprobarea, monitorizarea și evaluarea periodică a programelor de studii

COD:	4	5	6	7	8	9		
SEAQ PE – U. 01	Anrobat în sedinta							
	de Senat din data: -							
	03.03.2014							

Anexa 6

DISCIPLINE FILE

1Program data	
1.1 Institution	UNIVERSITY OF ORADEA
1.2 Faculty	Environment Protection
1.3 Department	Animal Husbandry and Agritourism
1.4 Domeniul de studii	Engineering and Management
1.5 Studies cycle	Licence
1.6 Study Program / Qualification	Engineering and Management in Public Nutrition and
	Agrotourism /Engineer

2. Datas about discipline

2.1 Name of discipline				APPLIED PHYSICS AND AGROMETEOROLOGY I						
2.2 Professor course Lecturer Olimpia Smaranda Mintaş										
2.3 Professor seminars/projects			Lec	cture	· Olimpia Smaranda Mi	ntaș				
2.4 Year of study	1	2.5 Semeste	er	1	2.6 Evaluation type	E	2.7 The discipline regime	0		

(I) Impose; (O) Optional;

3. Total estimated time (hours per semester of teaching activities)

			8			
3.1 Number of hours per week	4		From which: 3.2	2	3.3	2
			course		seminar/laborator/project	
3.4 Total hours of the curriculum	5	6	From which3.5	28	3.6	28
			course		seminar/laborator/project	
3.7.Distribution of Time Fund						ore
Study after manual, course suppor	t, bibliog	grapł	ny and notes			10
Additional documentation in the library, on the specialized electronic platforms and on the field						10
Training seminars / laboratories, themes, papers, portfolios and essays						23
Tutorial						10
Examinations						4
Other activities						10
3.8. Total hours of individual	56					
study						
3.9 Total hours per semester	112					
3.10 Number of credits	4					

4. Preconditions (if necessary)

4.1 of curriculum	-
4.2 of competences	-

5. Conditions (if necessary)

5.1. for course	Lecture room with blackboard, laptop and videoprojector

5.2. for seminar / laboratory /	Lecture room with blackboard, laptop and videoproiector
project	

6. Sp	becific skills accumulated
Proffesional skills	C1.2 Use of basic knowledge specific to fundamental disciplines to explain and interpret theoretical results and phenomena or aspects specific to the field of engineering and management in public catering and agrotourism C1.3 Application of theorems, principles and fundamental methods in order to solve, in conditions of qualified assistance, the problems specific to the field of engineering and management in public alimentation and agrotourism
Competențe transversale	CT3 Awareness of the need for continuous training; efficient use of learning resources and techniques for personal and professional development Identifying opportunities for continuous training and efficient use, for one's own development, of information sources and of communication resources and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian, as well as in a language of international circulation

7. Discipline objectives

7.1 General objective	- Acquiring theoretical and practical knowledge on physical					
5	phenomena encountered in living structures;					
	- Knowledge of physical phenomena that occur in the atmosphere					
	and their interdependence. Studying the influence of conditions					
	meteorological and climatic factors on plant growth and					
	distribution.					
	- Creating a rapid system for assessing the situations created by					
	weather conditions on plants.					
	- All these issues are addressed using the methods, principles and					
	laws of physics.					
7.2 Specific objectives	- Developing the ability to understand the physical phenomena					
	that take place in living systems and biotechnological processes.					
	-Understanding the research methods of the physical phenomena					
from the living systems and the biotechnological proce						
	-Promoting and developing interest in the technical disciplines					
	underlying food engineering					

8. Content*

8.1 Course	Teaching methods	Nr. of hours /
1. Introduction to Environmental Biophysics.	Lecture. debate	2
The elementary composition of living matter. Physical		
factors in the environment.		
2. Living biological system - Cell - Laws of	Lecture. debate	2

	PROCEDURA							
Universitatea din	pentru inițierea, aprobarea,	COD:	4	5	6	7	8	9
Oradaa	monitorizarea și evaluarea	SEAQ	Ar	brok	bat î	in ş	edir	nţa
Oracea	periodica a programeior de	PE – U. 01	de	Ser	nat d	din	data	a:
	studii			03	3.03	.20 ⁻	14	

		1
conservation in the environment and at the cellular level		4
3. Notions of thermodynamics and molecular physics:	Lecture. debate	4
Thermodynamic system, thermodynamic equilibrium,		
state parameters. Internal energy, heat, work, enthalpy,		
calorimetry.		
Principles of thermodynamics.		
4. Notions of liquid physics Fluid statics: hydrostatic	Lecture. debate	4
pressure, pressure units, Pascal's law, Archimedes' law.		
Fluid dynamics: laminar flow. Bernuolli's equation, the		
Poiseiuille-Hage equation, the turbulent flow. Viscosity.		
viscometers. Surface tension. Laplace's equation.		
surfactants.		
5. Water and aqueous solutions: Water molecule. Water	Lecture. debate	2
structure. Physical and chemical properties. The		
influence of Solvents on the structure of water. Water in		
living organisms: classification, content and role.		
Solutions and dispersions. Expression of concentrations.		
Dissolution equilibria.		
6. Transport phenomena: Diffusion: Fick's equations.	Lecture. debate	2
Nernst equilibrium, Nernst-Planck equilibrium,		
membrane potential. Osmosis: phenomenon, osmotic		
pressure, laws of osmotic pressure, determination of		
osmotic pressure. Applications in biology		
7.Electromagnetic fields in the environment. Electrical	Lecture. debate	2
phenomena at the cellular level. Electrical polarization		
of membranes.		
8. Electromagnetic radiation Non-ionizing radiation.	Lecture. debate	2
Ionizing radiation.		
9. The interaction of the electromagnetic field with	Lecture. debate	2
living systems. Dimensions and dosimetric units.		
Biological dose.		
10. Pollution due to electromagnetic fields.	Lecture. debate	2
11. Sound waves. Reception mechanisms, sound	Lecture. debate	2
transmission. The effect of noise on the human body.		
Bibliography		
1 DT Franconal Pionhygias Current Problems	Edimony Superante Dul	liching House

1. P.T. Frangopol, Biophysics-Current Problems, Edimpex-Speranta Publishing House, Bucharest, 1992.

2. A.I. Popescu, Fundamentals of medical biophysics, All Publishing House, Bucharest, 2001.

3. D.G.Mărgineanu, M.I. Isac, C. Tarba, Biophysics, Ed. Didactică Pedagogică, Bucharest 1980.

4. Anca Dumitrescu - Communication of the risk for health generated by the environment, Ed. Of the Institute of Public Health Bucharest, 2000

5. G. Cristea, Biophysics with medical orientation, vol.I., ISBN: 973-664-111-2, Univ. Vasile Goldiş, Arad, 2005.

6. Daniela Ciorba, Environmental Biophysics, Cluj-Napoca, EFES, 2008.

7.H. Criveanu, Physics Practical works, Rizoprint Publishing House, Cluj-Napoca, 2001
8.Georgeta Țarălungă, Biophysics and meteorology-Course, Ed. Todesco, Cluj-Napoca, 2003
9.H.Criveanu, Classical and modern agrometeorology, Ed. Digital Data, Cluj-Napoca, 2004

Universitatea din	PROCEDURA pentru iniţierea, aprobarea, monitorizarea si evaluarea	COD: SEAQ	4 5 6 7 8 9					
Oradea	periodică a programelor de studii	PE – U. 01	Aprobat în şedinţa de Senat din data: 03.03.2014					
10 H Crivaanu, Coorgete Terebunge, Elements of physics and meteorology applied to biosystems								
10.H.Criveanu, Ge	eorgeta Taratunga, Elements of physics	and meteorolog	y ap	pneo	1 10	DIOS	yste	ms,
Digital Publishing	House Data, 2004							

11. Olimpia Mintas, Biophysics and agrometeorology, course notes, 2011

	Teaching methods	Nr.of hours /
		Observations
8.2 Seminar	Demonstration, Practical Application	2
1. Means of protection and prevention of accidents in the laboratory. International System of Units in Medicine. Experimental data processing. Notions about error calculation	Demonstration, Practical Application	2
2. Determining the mass and density of bodies	Demonstration, Practical Application	2
3.Determination of the surface tension of liquids	Demonstration, Practical Application	2
4.Determination of the dynamic viscosity coefficient for liquids	Demonstration, Practical Application	2
5.Determination of the specific heat of solids	Demonstration, Practical Application	2
6.Determination of the specific heat of liquids	Demonstration, Practical Application	2
7.Determination of latent mass melting heat	Demonstration, Practical Application	2
8.Measuring the sound with the sound level meter. Hearing threshold and frequency of threshold differentiation in humans. Audiogram.	Demonstration, Practical Application	2
9. Determination of the refractive index of liquids	Demonstration, Practical Application	2
10.Determination of relative air humidity	Demonstration, Practical Application	2
11. Determining the activity of a radioactive source	Demonstration, Practical Application	2
12. Interaction of ionizing radiation with the substance. Determination of half-thickness.	Demonstration, Practical Application	2
13. Dosimetry and radiation protection	Demonstration, Practical Application	2
14. Final laboratory test	Demonstration, Practical Application	2
Bibliography		

1.H.Criveanu, Georgeta Taralunga, Elements of physics and meteorology applied to biosystems, Digital Publishing House Data, 2004

2.Olimpia Mintas, - Biophysics, Laboratory guide, Oradea, 20103.A.Teusdea - Practical works of biophysics, University of Oradea Publishing House, 2011

Universitatea din Oradea

COD:	4	5	6	7	8	9	
SEAQ	-	Ŭ.	•	•			
	Aprobat in şedinţa						
PE - 0. 01	de Senat din data:						
	03.03.2014						

9. Corroborating the contents of the discipline with the expectations of epistemic community representatives, professional associations and representative employers in the field of the program

The content of the discipline is in line with what is done in other university centers in the country and abroad. For a better adaptation to the labor market requirements of the content of the discipline, meetings were held both with representatives of the business environment and with specialized teachers and physics in pre-university education.

10 Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Wage in final
Activity type	10.1 Evaluation enterna	10.2 Evaluation methods	10.5 wage in mai
			mark
10.4 Course	- the correctness and completeness of the	Exam	80%
	assimilated knowledge;		
	- an overall understanding of the		
	importance of the discipline studied and		
	the connection with the other		
	fundamental disciplines		
	- logical coherence;		
	- the degree of assimilation of the		
	specialized language;		
	- criteria regarding the attitudinal		
	aspects: the interest for the individual		
	study and the professional development		
10.5 Seminar	The way of acquiring the specialized	Exam	20%
	language		
	-capacity to put into practice the		
	theoretical notions acquired		
10.6 Laborator			
10.7 Project			

10.8 Minimal performance standard: Correct solution of calculations and problems of medium complexity, specific to engineering sciences; Responsible realization, in conditions of qualified assistance, of projects for solving some problems specific to the field, with the correct evaluation of the workload, of the available resources, of the necessary completion time and of the risks, in conditions of application of deontological norms and professional ethics in the field, as well as occupational safety and health.

Data completării	Semnătura titularului** de curs	Semnătura titularului** de seminar/laborator/proiect
	Lecturer dr.Mintaș Olimpia Smaranda (buzasiu@yahoo.com)	Lecture dr.Mintaș Olimpia Smarnda
Data		Department director signiture:
		Conf.dr.ing. Maerescu Cristina
		Dean signiture
		Prof.dr.ing. Chereji Ioan