RESEARCHES REGARDING THE INFLUENCE OF THE PLANT DENSITY ON YIELD AND WATER USE EFFICIENCY IN MAIZE CROP FROM CRISURILOR PLAIN

Ioana Borza*

*University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048 Oradea; Romania, e-mail: borzaioanamaria@yahoo.com

Abstract

The purpose of the paper want to optimize the plants density in maize from Crisurilor Plain for improvement of the water use efficiency. The paper is based on the research carried out during 2005-2007 in Agricultural Research and Development Station Oradea using the hybrid Turda super. The optimum water regime is based by ten to ten determinations of the soil moisture and maintaining the soil water reserve on watering depth (0-75 cm) between easily available water content and field capacity. The biggest water use efficiency at Turda super maize hybrid was registered at 55000 plants/ha in unirrigated conditions and in irrigated varianat the greatest value was obtained at 70000 plants/ha density.

Key words: plant density, yield, water use efficiency, maize

INTRODUCTION

Maize is a vegetal specie with a big potential due a large utilisation like food sources for people and animals and for industry. Optimizing of the water regime assures the integral use of the yield potential of the maize hybrids. In the same time, natural resources of the water are more and more used as consequence decrease continously and the increase of the water use efficiency in maize, the main crops from Romania, is an important objective.

Water is an essential element for every stage of plant development starting from germination to harvesting. In the international and Romanian literature the quantification of the water use efficiency is realized by indicators wich emphasize all the water quantity used or irrigation water use (Muntean L.S. and al, 2008). The indicators present the probleme of water use from two point of view: emphasize the quantity of yield or yield gain obtained on 1 litter water and emphasize the water used on 1 kilograme of yield.

Researches from international literature (Ogola J.B.O et al, 2005, Peake A.S et al, 2008) emphasized the influence of the density, and irrigation on water use efficiency in maize.

In the Crisurilor Plain, the researches regarding maize water use efficincy were published by Grumeza N. et all 1987, Domuta C., 2005;

Borza Ioana 2005, 2006, emphasized the climate and the technology elements influence on water use efficiency.

MATERIALS AND METHODS

The experience was placed by subdividing plots in in Agricultural Research and Development Station Oradea. The surface of the plot experience: 30 m². Number of repetition: 4. The experience had two factors: the water supply regime (irrigated and unirrigated) and plants density (25000 plants/ha, 40000 plants/ha, 55000 plants/ha, 70000 plants/ha and 85000 plants/ha).

The plants' water consumption was provided by the decade control of the soil moisture and by the application of irrigation when the water reserve decreased bellow easily available water content on the irrigation depth of the maize crop (0-75 cm). The optimum water consumption results at the end of the vegetation period, after the water balance in the soil is accomplished. (Domuta C., 2005). The water use efficiency (WUE) was calculated as a ratio between yield and water consumption, and the irrigation water use efficiency (IWUE) was calculated as the ratio between the yield gain achieved through irrigation and the irrigation rate. (Domuta C., 2005).

RESULTS AND DISCUSSIONS

1. The influence of the plants density on maize yield

In unirrigated conditions, in the year 2005 the bigest maize yield was obtained in the variant with 55000 plants/ha density (71,2 q/ha), followed by 40.000 plants/ha density with 63,1 q/ha yield; the lowest yield of maize 50,29 q/ha was obtained in the biggest plant density (85000 plants/ha). In the irrigated conditions the biggest yield was obtained in the variant with 55000 plants/hectare, too (83,60 q/ha) and the smallest in the variant with the biggest plants density, 85000 plants/hectare, 61,24 q/ha (table 1).

Table 1
The influence of the plant density on maize yield of the Turda super hybrid (q/ha) in unirrigated and irrigated conditions, Oradea 2005

Nr.	Variant	Water regime		- Average on density
crt.	v arrant	Unirrigated	Irrigated	Average on density
1.	25.000 plants/ha	57,80	69,30	63,55 ^{Mt}
2.	40.000 plants/ha	63,10	75,20	69,15***
3.	55.000 plants/ha	71,20	83,60	77,40***
4.	70.000 plants/ha	59,70	70,20	64,95***
5.	85.000 plants/ha	50,20	61,24	55,72***
A	verage on regime	60,40	71,91	-

	Density	Water regime	Water regime x density	Density x Water regime
DL 5%	2,14	3,10	3,62	3,10
DL 1%	3,20	5,20	5,86	4,90
DL _{0,1%}	4,70	9,70	10,20	7,20

In the year 2006, in unirrigated as well in irrigarted conditions, the biggest yield of the maize was obtained in 70000 plants/ha density, 93,7 q/ha, respectively 112,4 q/ha. Irrigation determined an yield gain of 15,5 q/ha, very significant statistically. (table 2)

Table 2
The influence of the plant density on maize yield of the Turda super hybrid (q/ha) in unirrigated and irrigated conditions, Oradea 2006

	in unitigated and inigated conditions, Oracea 2000							
Nr.	Variant	Water	regime	Average on density				
crt.	v arrant	Unirrigated	Unirrigated Irrigated					
1.	25.000 plants/ha	73,00	80,10	76,55 ^{Mt}				
2.	40.000 plants/ha	81,00	97,80	89,40				
3.	55.000 plants/ha	86,10	103,20	94,65				
4.	70.000 plants/ha	93,70	112,40	103,05				
5.	85.000 plants/ha	86,40	104,20	95,3				
A	verage on regime	84,04	99,54	-				

	Density	Water regime	Water regime x density	Density x Water regime
DL 5%	2,32	3,46	3,64	2,86
DL 1%	3,20	5,30	4,98	4,2
DL 0.1%	5,18	7,10	8,28	7,09

In unirrigated conditions, in the year 2007, the biggest maize yield was obtained in 40000 plants/ha density, 61,0 q/ha, and in irrigated conditions in 70000 plants/ha density, 123,0 q/ha (table 3)

Table 3

The influence of the plant density on maize yield Turda super hybrid (q/ha) in unirrigated and irrigated conditions, Oradea 2007

	in unifficated and iffigated conditions, Oracea 2007							
Nr.	Variant	Water	regime	Average on density				
crt.	v arrant	Unirrigated	Irrigated	Average on density				
1.	25.000 plants/ha	53,20	90,20	71,7				
2.	40.000 plants/ha	61,00	110,90	85,95				
3.	55.000 plants/ha	57,60	121,00	89,30				
4.	70.000 plants/ha	50,20	123,00	86,00				
5.	85.000 plants/ha	41,30	109,70	75,50				
A	verage on regime	52,66	110,96	-				

	Density	Water regime	Water regime x density	Density x Water regime
DL 5%	2,14	3,10	3,62	3,10
DL 1%	3,20	5,20	5,86	4,90
DL _{0.1%}	4,70	9,70	10,20	7,20

2. The influence of the plant density on water consumption in unirrigated and irrigated maize

In the year 2005, at the maize sowing, the water reserve on 0-150 cm depth was between 4810 and 4890 m³/ha, and in harvesting, the values were between 3020 şi 3135 m³/ha. In the vegetation period of maize was registered 419,3 mm rainfall. For maintaining the water reserve on 0-75 cm between minimum level and field capacity were used an irrigation rate of 750 m³/ha. The irrigation determined the increase of the water consumption. In the variant with 85000 plants density were registered the biggest values of the water consumption in unirrigated (6073 m³/ha) also in irrigated (6733 m³/ha) conditions; the maize used more water from the soil reserve. (table 4)

 ${\it Table~4} \\ {\it Total~water~consumption~and~covering~sources~in~maize~sowing~in~different~plants~density,} \\ {\it Oradea~2005}$

		Σ (e-	+ t)		The	covering	g sourc	es	
Variant	Water regime	m³/ha	%	R_i - R_f		$P_{\rm v}$		Σm	
		III /IIa	/0	m³/ha	%	m³/ha	%	m ³ /ha	%
25.000	Unnirrigated	5878	100	1685	29	4193	71	-	•
plants/ha	Irigated	6703	114	1760	26	4193	63	750	11
40.000	Unnirrigated	5888	100	1695	29	4193	71	-	
plants/ha	Irigated	6733	114	1790	27	4193	62	750	11
55.000	Unnirrigated	5943	100	1750	29	4193	71	-	-
plants/ha	Irigated	6703	113	1760	26	4193	63	750	11
70.000	Unnirrigated	5983	100	1790	30	4193	70	-	-
plants/ha	Irigated	6723	112	1780	26	4193	62	750	12
85.000	Unnirrigated	6073	100	1880	31	4193	69	-	-
plants/ha	Irigated	6733	111	1790	27	4193	62	750	11

 $[\]Sigma$ (e + t) = total water consumption

The rainfall registered in the year 2006 in the vegetation period of maize were of 3550,0 m³/ha, and the optimum supply with water determined using an irrigated rate of 1160 m³/ha. Irigation determined the increase of the water consumption values with 22-23%. The biggest values of the water consumption were registered in the variant with the biggest plants density of maize, 5490 m³/ha in unirrigated conditions and 6690 m³/ha in irrigated conditions. (table 5)

 R_i - R_f = soil reserve (initial reserve – final reserve)

P_v= rainfall during the vegetation period

 $[\]Sigma$ m = irrigation rate

 ${\it Table~5} \\ {\it Total~water~consumption~and~covering~sources~in~maize~sowing~in~different~plants~density,} \\ {\it Oradea~2006}$

		Σ (e-	+ t)		The	covering	g sour	ces	
Variant	nt Water regime		m³/ha %	R _i -I	R_{f}	$P_{\rm v}$		Σt	n
		iii / iid	/ 0	m³/ha	%	m ³ /ha	%	m ³ /ha	%
25.000	Unnirrigated	5360	100	1810	34	3550	66	-	-
plants/ha	Irigated	6560	123	1850	28	3550	54	1160	18
40.000	Unnirrigated	5460	100	1810	34	3550	66	-	-
plants/ha	Irigated	6860	128	2150	31	3550	52	1160	17
55.000	Unnirrigated	5372	100	1822	34	3550	66	-	-
plants/ha	Irigated	6615	123	1905	29	3550	54	1160	17
70.000	Unnirrigated	5415	100	1865	34	3550	66	-	-
plants/ha	Irigated	6650	123	1940	29	3550	53	1160	18
85.000	Unnirrigated	5490	100	1940	35	3550	65	-	-
plants/ha	Irigated	6690	122	1980	30	3550	53	1160	17

 Σ (e + t) = total water consumption

 R_i - R_f = soil reserve (initial reserve – final reserve)

P_v= rainfall during the vegetation period

 Σ m = irrigation rate

In the year 2007 in 85000 plants/ha density were registered the biggest values of the total water consumption 4490 m^3 /ha in unirrigated conditions and 6648 m^3 /ha in irrigated conditions. (table 6).

Table 6
Total water consumption and covering sources in maize sowing in different plants density,
Oradea 2007

* - · · · · · · · · · · · · · · · · · ·									
		Σ (e-	+ t)	The covering sources					
Variant	Water regime	m ³ /ha	%	R_i - R_f		P_{v}		Σm	
		III /IIa	/0	m ³ /ha	%	m³/ha	%	m ³ /ha	%
25.000	Unnirrigated	4038	100	420	10	3618	90	-	-
plants/ha	Irigated	6238	155	-330	-5	3618	57	2950	48
40.000	Unnirrigated	4128	100	510	12	3618	88	-	-
plants/ha	Irigated	6318	153	-250	-4	3618	57	2950	47
55.000	Unnirrigated	4188	100	570	14	3618	86	-	-
plants/ha	Irigated	6393	153	-175	-3	3618	56	2950	47
70.000	Unnirrigated	4218	100	600	14	3618	86	-	-
plants/ha	Irigated	6558	155	-10	0,0	3618	55	2950	45
85.000	Unnirrigated	4490	100	872	19	3618	81	-	-
plants/ha	Irigated	6648	148	80	1	3618	54	2950	45

 Σ (e + t) = total water consumption

 R_i - R_f = soil reserve (initial reserve – final reserve)

P_v= rainfall during the vegetation period

 Σ m = irrigation rate

3. The influence of the plants density on water use efficiency (WUE) in maize

In unirrigated conditions, in the year 2005, the biggest value of the water use efficiency was registered in 55000 plants/ha density, $1.2~kg/m^3$. In the same density was registered the biggest value of WUE $1.25~kg/m^3$ in irrigated conditions. (table 7)

Table 7

The influence of the plants density of the Turda super hybrid on water use efficiency (WUE) in unirrigated and irrigated conditions, Oradea 2005

Density	Water regime	WUE		Difference
Delisity	w ater regime	Kg/m ³	%	%
25.000 plants/ha	Unnirrigated	0,98	100	1
25.000 plants/fla	Irigated	1,04	105	5
40.000 plants/ha	Unnirrigated	1,07	100	-
40.000 plants/na	Irigated	1,12	104	4
55.000 plants/ha	Unnirrigated	1,20	100	-
55.000 plants/fla	Irigated	1,25	104	4
70.000 plants/ha	Unnirrigated	0,99	100	-
70.000 plants/lia	Irigated	1,29	105	5
95 000 mlants/ha	Unnirrigated	0,83	100	-
85.000 plants/ha	Irigated	0,91	110	10

In the year 2006, the biggest value of the water use efficiency was obtained in 70000 plants/ha density in unirrigated conditions (1,73 kg/m³) and also in irrigated conditions (1,69 kg/m³). (table 8)

Table 8

The influence of the plants density of the Turda super hybrid on water use efficiency (WUE) in unirrigated and irrigated conditions, Oradea 2006

Dongity	Water regime	WUE		Difference
Density	Water regime	Kg/m ³	%	%
25.000 plants/ha	Unnirrigated	1,36	100	•
25.000 plants/lia	Irigated	1,22	90	-10
40.000 plants/ha	Unnirrigated	1,51	100	-
40.000 piants/na	Irigated	1,43	94	-6
55.000 plants/ha	Unnirrigated	1,60	100	•
55.000 plants/lia	Irigated	1,56	98	-2
70.000 plants/ha	Unnirrigated	1,73	100	-
70.000 piants/na	Irigated	1,69	98	-2
85.000 plants/ha	Unnirrigated	1,57	100	-
65.000 piants/na	Irigated	1,56	99	-1

In unirrigated conditions, in the year 2007, the biggest values of the water use efficiency was registered in 40000 plants/ha density, and in irrigated conditions in 55000 plans/ha density. (table 9)

Table 9

The influence of the plants density of the Turda super hybrid on water use efficiency (WUE) in unirrigated and irrigated conditions, Oradea 2007

Density	Water regime	WUE	,	Difference
Delisity	water regime	Kg/m ³	%	%
25.000 plants/ha	Unnirrigated	1,32	100	-
25.000 plants/lia	Irigated	1,45	109	9
40.000 plants/ha	Unnirrigated	1,48	100	-
40.000 piants/na	Irigated	1,76	119	19
55.000 plants/ha	Unnirrigated	1,38	100	-
55.000 plants/na	Irigated	1,89	137	37
70.000 plants/ha	Unnirrigated	1,19	100	-
70.000 plants/na	Irigated	1,88	157	57
85.000 plants/ha	Unnirrigated	0,92	100	-
05.000 piants/na	Irigated	1,65	179	79

4. The influence of the plants density on irrigation water use efficiency (IWUE) of maize

In the year 2005, the biggest value of the irrigation water use efficiency was registered in 55000 plants/ha density, 1,65 kg gain/m³; in the other studied density, the values of IWUE was smaller (table 10)

Table 10

The influence of the plants density of the maize Turda super hybrid on irrigation water use efficiency (IWUE), Oradea 2005

Density	IWUE		Difference	
	Kg gain/m ³	%	Kg gain/m ³	%
25.000 plants/ha	1,53	100	-	-
40.000 plants/ha	1,61	105	0,08	5
55.000 plants/ha	1,65	108	0,12	8
70.000 plants/ha	1,40	92	-0,13	-8
85.000 plants/ha	1,47	96	-0,06	-4

In 2006, the biggest yield gain, for 1 m³ of irrigation water used was registered in 70000 plants/ha density 1,61 kg yield gain/m³. (table 11)

Table 11
The influence of the plants density of the maize Turda super hybrid on irrigation water use efficiency (IWUE), Oradea 2006

Density	IWUE		Difference				
	Kg gain/m ³	%	Kg gain/m ³	%			
25.000 plants/ha	0,61	100	-	-			
40.000 plants/ha	1,45	237	0,84	137			
55.000 plants/ha	1,47	242	0,86	142			
70.000 plants/ha	1,61	264	1,00	164			
85.000 plants/ha	1,53	252	0,92	152			

In the year 2007, the biggest yield gain, obtained in 1 m³ of irrigation water used was registered in 70000 plants/ha density 2,47 kg yield gain/m³. (table 12)

Table 12
The influence of the plants density of the maize Turda super hybrid on irrigation water use efficiency (IWUE), Oradea 2007

Density	IWUE		Difference	
	Kg gain/m ³	%	Kg gain/m ³	%
25.000 plants/ha	1,25	100	-	-
40.000 plants/ha	1,69	135	0,44	35
55.000 plants/ha	2,15	172	0,90	72
70.000 plants/ha	2,47	197	1,22	97
85.000 plants/ha	2,32	185	1,17	85

CONCLUSION

The plants density it is very important in optimizing of the maize vegetation factors regime. The researches carried out in Agricultural Research and Development Station Oradea used five graduation of the plants density and studied their influence on yield, water consumption, water use efficiency and irrigation water use efficiency.

In unirrigated and also in irrigated conditions, the maize plants density influence the values of the yield obtained. In unirigated conditions, the biggest yield were obtained in 55000 plants density, except the dry year 2007, in wich the biggest yield were obtained in 40000 plants/ha density. In irrigating variants the greatest value of the yield was achieved at 70000 plants/ha density. In 2 years in unirrigated conditions the biggest water use efficiency (WUE) in maize was obtained at the 70000 plants/ha density.

In 2 from 3 years, of the research period, the biggest values of the irrigation water use efficiency (IWUE) in maize was obtained at the 70000 plants/ha density. In the technology of maize Turda super hybrid, in the Crisurilor Plain conditions, the recomandation is to use the 55000 plants/ha density in unirrigated conditions and 70000 plants/ha in irrigated conditions.

REFERENCES

- Borza Ioana, 2006 Cercetări privind influența unor măsuri fitotehnice asupra eficienței valorificării apei de către cultura porumbului în condițiile Campiei Crisurilor. Teza de doctorat sustinuta la USAMV Cluj-Napoca p. 149-159
- 2. Domuţa C., 2005 Irigarea culturilor. Ed. Universității Oradea p. 76-124
- Domuța C., 2005 Practicum de irigarea culturilor și agrotehnică. Ed. Universității Oradea, ISBN 973-613-946-8.
- Domuţa C., Sandor Maria, Borza Ioana, Sarca Gh., Aurora Venig, 2005 The influence of some agrophytotechnical factors on water use efficincy from maize in Crisurilor Plain conditions ICDA Fundulea, pp.214-230
- 5. Doorembos J. si Pruitt W.O., 1992 Crop Water requirements FAO Rome, p.172-201
- 6. Grumeza N. and al, 1989, Prognoza și programarea udărilor în sistemele de irigații, Ed Ceres București
- Muntean L.S., Solovăstru Cernea, Gavrilă Morar, Marcel Duda, Dan Vârban, Sorin Muntean., 2008 Fitotehnie.Ed. AcademicPres Cluj-Napoca, 161-210
- Ogola J.B.O., Wheeler T.R., Harris P.M., 2005 Water use of maize in response to planting density and irrigation. South African Journal of Plant and Soil Vol 22, No. 2, p. 116-121
- A.S. Peake, M.J. Robertson, R.J. Bidstrup, 2008 Optimising maize plant population and irrigation strategies on the Darling Downs using the APSIM crop simulation model. Published in Australian Journal of Experimental Agriculture 48 (3) p. 313-325