STUDY REGARDING THE WEEDS INFLUENCE ON WATER USE EFFICIENCY IN MAIZE CROP FROM CRIŞURILOR PLAIN

Ioana Borza*

*University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048 Oradea; Romania, e-mail: <u>borzaioanamaria@yahoo.com</u>

Abstract.

The paper is based on the researches carried out during 2005-2007 on the preluvosoil from Agricultural Research and Development Station Oradea. The weeds determined the yield losses between 43,1% and 85,8% in unirrigated conditions and between 45,2% and 79% in irrigated conditions. The weeds determined the decrease of the water use efficiency with 42-86,3% in unirrigated conditions and with 44-79,3% in irrigated conditions. All the years the weeds determined the decrease of the irrigation water use efficiency; the biggest difference between the weeding variant and the variant without weeds was registered in 2007, -70,4%.

Key words: maize, weeds, water consumption, yield, water use efficiency, irrigation water use efficiency

INTRODUCTION

Now, but especially in the future, the agriculture gives the big importance all of the factors with contributions in the yield increase: dynamics factors – hybrid, fertilizers, water etc. – and in the same time and so much for factors of the crop protection against the pathogens, pests and weed, because these factors can produce large damage and decrease of the yield quality.

The researches data emphasized that in the maize crop from Crisurilor Plain, the weeds can produce the yield losses of 30 - 80% or more and a decrease of the yield quality (Ciobanu Cornelia, 2007). One of consequence of these losses is very big water consumption of the weeds due the roots system more profound and developed.(Domuta C., 2005) and the paper studied the influence of the weeds on water use efficiency in unirrigated and irrigated maize.

MATERIALS AND METHODS

The experiment was placed on the preluvosoil from Agricultural Research and Development Station Oradea during 2005-2007. The surface of the experiment block = 30 m^2 ; number of repetition = 4. Placed method = plot subdivided.

The preluvosoil from research field is low acid, the humus content is low, too, and the phosphorus content is moderate. The bulk density on the ploughing land indicates a low settled soil land strong settled on the irrigation depth (0-75 cm). Wilting point and field capacity have the median values on the irrigation depth.

Plants water consumption was determined directly, based on the method of the water balance in the soil on 0-150 cm, In the irrigated variant, the moisture control ten to ten days assured to maintain the soil water reserve on 0-75 cm between easily available water content and field capacity.

Water use efficiency was calculated like ratio between yield and water consumption and irrigation water use efficiency was calculated like ratio between yield gain obtained using the irrigation and irrigation rate used for maintaining the soil water reserve on irrigation depth between easily available water content and field capacity.

The main weeds from maize crop from research field were: Amaranthus retroflexus, Chenopodium album, Setaria glauca, Echinichloa crus-galli, Digitaria sanguinalis, Cirsium arvense, Galinsoga parviflora.

RESULTS AND DISCUSSIONS

The influence of the weeds on maize yield

In the year 2005, in unirrigated conditions, the weeds determined an yield losses of 54% (52,26 g/ha vs 113,6 g/ha). The yield losses from irrigated variant was of 51% (63,8 q/ha vs 130,2 q/ha). Irrigation determined the yield gains very significant statistically. (table 1)

		Table	1
The influence of the w	eeds on yield in unirrigated and irrigated maize	e, Oradea 2005	
	Variant		

Water regime	Herbicided, without		With weeds,		Average on the
	weeds Without her		erbicides	regim	
	q/ha	%	q/ha %		
Unirrigated	113,6	100	52,26	46,0	82,93 ^{Mt}
Irrigated	130,2	100	63,80	49,0	97,00 ⁰⁰⁰
Average on the variant with and without weeds	121,9 ^{Mt}	100	58,03 ⁰⁰⁰	47,6	-

Water regi	me	with and without weeds	With and without weeds x Water regime	Water regime x With and without weeds
DL 5%	3,6	1,9	3,1	2,9
DL 1%	5,2	3,2	4,9	3,7
DL 0,1%	7,9	5,1	6,8	5,8

The yield losses determined by the weeds in 2006 in the unirrigated variant was of 46,9% (49,22 q/ha vs. 114,2 q/ha) and of 44,8% (62,64 q/ha vs. 138,6 q/ha) in the irrigated variant. The yield gains determined by the irrigation use were very significant statistically. (table 2.)

Table 2

Water regime	Herbicided, without		With w	veeds,	Average on the
	weeds Without herbicides		weeds Without herbicides re		regim
	q/ha	%	q/ha	%	
Unirrigated	114,2	100	49,22	43,1	81,71 ^{Mt}
Irrigated	138,6	100	62,64	45,2	100,62***
Average on the variant with and without weeds	126,4 ^{Mt}	100	55,93000		-

The influence of the weeds on yield in unirrigated and irrigated maize, Oradea 2006

Water regi	me	with and without weeds	With and without weeds x Water regime	Water regime x With and without weeds
DL 5%	4,1	2,7	3,9	3,8
DL 1%	5,9	4,2	5,2	4,6
DL 0,1%	9,8	6,8	7,9	6,4

The biggest yield losses from the studied period were registered in 2007, 85,8% (9,6 q/ha vs. 67,2 q/ha) in unirrigated canditions and 79% (25,4 q/ha vs. 120,8 q/ha) in irrigated variant. Irrigation determined yields gains very significant statistically, too. (table 3)

Table 3

The influence of the weeds on yield in unirrigated and irrigated maize, Oradea 2007

Water regime	Herbicided, without		With weeds,		Average on the		
_	weeds		Without herbicides		regim		
	q/ha	%	q/ha	%			
Unirrigated	67,2	100	9,6	14,2	38,4		
Irrigated	120,8	100	25,4	21,0	73,1		
Average on the variant with and without weeds	94,0	100	17,5	18,6	-		

Water regi	me	with and without weeds	With and without weeds x Water regime	Water regime x With and without weeds
DL 5%	3,1	2,1	2,9	2,4
DL 1%	5,3	3,3	4,8	3,9
DL 0,1%	7,9	5,8	6,7	5,6

The influence of the weeds on total water consumption

In the unirrigated variant with weeds, total water consumption had bigger values than in the variant without weeds, $6073 \text{ m}^3/\text{ha} \text{ vs} 5983 \text{ m}^3/\text{ha}$ in 2005, 5490 m³/ha vs. 5372 m³/ha in 2006 and 4502 m³/ha vs. 4402 m³/ha in 2007. The same situation were registered in irrigated variant. The explanation consists of the bigger water quantity used from soil water reserve (table 4)

Irrigation determined the increase of the total water consumption both in the variant with weeds and without weeds; the differences registered in comparison with unirrigated variant were of 10 and 11% in 2005, 23% in 2006, 65 and 67% in 2007. The participation of the irrigation in the covering sources of the optimum total water consumption was of 11% and 12% in 2005, of 17% in 2006 and of 40% in 2007. (table 4)

Table 4

	11		p, orau	cu 2005 .	2007				
		Σ (e	+ t)	Covering sources					
Variant	Water regime			R _i -R _f		P _v		Σm	
	water regime	m³/ha	%	m³/ha	%	m ³ /ha	%	m ³ /h a	%
			2005	5					
With woods	Unirrigated	6073	100	1880	31	4193	69	-	-
with weeds	Irrigated	6703	110	1760	26	4193	63	750	11
Without woods	Unirrigated	5983	100	1790	30	4193	70	-	-
without weeds	Irrigated	6613	111	1670	25	4193	63	750	12
			2006	5					
With woods	Unirrigated	5490	100	1940	35	3550	65	-	-
with weeds	Irrigated	6760	123	2050	30	3550	53	1160	17
Without woods	Unirrigated	5372	100	1822	34	3550	66	-	-
without weeds	Irrigated	6615	123	1905	29	3550	54	1160	17
		•	2007	7					
With woods	Unirrigated	4502	100	690	15	3812	85	-	-
with weeds	Irrigated	7442	165	680	9	3812	51	2950	40
Without woods	Unirrigated	4402	100	590	13	3812	87	-	-
without weeds	Irrigated	7342	167	580	8	3812	52	2950	40

Total water consumption and covering sources in the variant with and without weeds in the maize crop, Oradea 2005-2007

 Σ (e + t) = total water consumption

 R_i - R_f = soil reserve (initial reserve – final reserve)

 P_v = rainfall during the maize vegetation period

 Σm = irrigation rate

The influence of the weeds on water use efficiency (WUE)

The weeds determined a very big decrease of the water use efficiency both in unirrigated and in irrigated conditions.

In the year 2005, the weeds determined a decrease of the water use efficiency with 55% (0,86 kg/m³ vs. 1,90 kg/m³) in unirrigated conditions and with 52% (0,95 kg/m³ vs.1,97 kg/m³) in irrigated conditions. (table 5).

The values of the decreases registered in the year 2006 are bigger than the values registered in 2005: -58% (0,90 kg/m³ vs. 2,13 kg/m³) in unrrigated conditions and -56% (0,93 kg/m³ vs. 2,09 kg/m³) in irrigated conditions.

The biggest differences between water use efficiency in the variant with and without weed were registered in 2007. In irrigated conditions, the difference was of -86,3% (0,21 kg/m³ vs. 1,53 kg/m³) and in irrigated

conditions the difference was of -79,3% (0,34 kg/m³ vs. 1,64 kg/m³). (table 5)

The minuence of the wee	as on water use enterency (, cl) in man	le, oracea	2002 2007
Water regime	Variant	WU	ΓE	Difference
water regime	water regime variant		%	%
	2005			
Unirrigated	Without weeds	1,90	100	-
Omnigated	With weeds	0,86	45	-55
Irrigated	Without weeds	1,97	100	-
migacou	With weeds	0,95	48	-52
2006				
Unirrigated	Without weeds	2,13	100	-
Omnigated	With weeds	0,90	42	-58
Irrigated	Without weeds	2,09	100	-
migated	With weeds	0,93	44	-56
	2007			
Unirrigated	Without weeds	1,53	100	-
Omnigated	With weeds	0,21	13,7	-86,3
Irrigated	Without weeds	1,64	100	-
inigated	With weeds	0,34	20,7	-79,3

The influence of the weeds on water use efficiency (WUE) in maize, Oradea 2005-2007

The influence of the weeds on irrigation water use efficiency (IWUE)

The weeds determined to obtain the smaller values of the irrigation water use efficiency, the yield gain obtained for every 1 m³ of irrigation water was smaller in the variant with weeds in comparison with the value obtained in the variant without weeds. The differences between the irrigation water use efficiency in the variant with weeds and without weeds were of -30,3% (1,54 kg yield gain/m³ vs. 2,21 kg yield gain/m³) in 2005, of -49,1% (1,07 kg yield gain/m³ vs. 2,10 kg yield gain/m³ vs) in 2006 and of -70,4% (0,54 kg yield gain/m³ vs 1,82 kg yield gain/m³) in 2007. (table 6)

Table 6

Table 5

The influence of the weeds on irrigation water use efficiency (IWUE) in maize, Oradea 2005-2007

2000 2001				
IWUE		Difference		
Kg yield gain/m ³	%	Kg yield gain/m ³	%	
2005				
2,21	100	-	-	
1,54	69,7	-0,67	-30,3	
2006				
2,10	100	-	-	
1,07	50,9	-1,03	- 49,1	
2007				
1,82	100	-	-	
0,54	29,6	-1,28	- 70,4	
	IWUE Kg yield gain/m³ 2005 2,21 1,54 2006 2,10 1,07 2007 1,82 0,54	IWUE Kg yield gain/m³ % 2005 2,21 100 1,54 69,7 2006 2,10 100 1,07 50,9 2007 2007 100 0,54 29,6	IWUE Difference Kg yield gain/m ³ % Kg yield gain/m ³ 2005 - - 2,21 100 - 1,54 69,7 -0,67 2006 - - 2,10 100 - 1,07 50,9 -1,03 2007 - - 1,82 100 - 0,54 29,6 -1,28	

CONCLUSIONS

The influence of the weeds on water use efficiency in maize crop was studied in an experiment carried out in Oradea during 2005-2007 on a preluvosoil and the following conclusions were formulated:

- the weeds (*Amaranthus retroflexus, Chenopodium album, Setaria glauca, Echinichloa crus-galli, Digitaria sanguinalis, Cirsium arvense, Galinsoga parviflora*) determined the yield losses between 43,1% (2006) and 85,8% (2007) in unirrigated conditions and between 45,2% (2006) and 79% (2007) in irrigated conditions; all the losses were very significant statistically;

- he presence of the weeds in the maize crop determined to use o bigger quantity of water from soil water reserve and the increase of the total water consumption in comparison with the variant without weeds;

- the weeds determined the decrease of the water use efficiency both in unirrigated conditions (variation interval 42-86,3%) and in irrigated conditions (variation interval 44-79,3%);

- irrigation water use efficiency had smaller values in the variant with weeds in all three year studied; the differences in comparison with the variant without weeds were of -30,3% in 2005, of -49,1% in 2006 and of -70,4% in 2007.

REFERENCES

- 1. Borza Ioana, 2006, Cercetări privind influența unor măsuri fitotehnice asupra eficienței valorificării apei de către cultura porumbului în condițiile Campiei Crisurilor. Teza de doctorat sustinuta la USAMV Cluj-Napoca
- Ciobanu Cornelia, 2007, Cercetări privind perfecționarea metodelor de combatere a buruienilor din cultura de porumb. Simpozionul "Tehnologii de cultură pentru grâu şi porumb în condițiile sistemului de agricultură durabilă" (ISBN 973-613-928-X). Pag. 192 – 198, Editura Universității Oradea, 2005.
- 3. Domuța C., 2005, Irigarea culturilor. Ed. Universității Oradea p. 76-124
- 4. Domuța C., 2005, Practicum de irigarea culturilor și agrotehnică . Ed. Universității Oradea, ISBN 973-613-946-8.
- Domuţa C., Sandor Maria, Borza Ioana, Sarca Gh., Aurora Venig, 2005 The influence of some agrophytotechnical factors on water use efficiency from maize in Crisurilor Plain conditions ICDA Fundulea, pp.214-230
- Doorembos J. si Pruitt W.O., 1992 Crop Water requirements FAO Rome, p.172-201
- 7. Muntean L.S., Solovăstru Cernea, Gavrilă Morar, Marcel Duda, Dan Vârban, Sorin Muntean., 2008, Fitotehnie.Ed. AcademicPres Cluj-Napoca, 83-135