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Abstract
In this comparative study the both plate have the same rectangular surface ba and 

thickness .g  This paper represents a theoretical and comparative study made it to obtain the 

approximate roots for the static displacement.
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INTRODUCTION

For the plate made by the refuse wood the calculus have been made 
similarly which a isotropic plate using the variational Ritz method. The both 
plates have simply supported all the edges and are loading with a uniformly 
forces having the intensity q .

The Poisson coefficients is for the both plate 0
The Ritz methods consist in selecting a suitable infinite series 

expression of the deflection which satisfies the geometrical boundary 
conditions, and satisfaction of the differential equation motion is not 
required.

We use for the deflection expression:
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Where:
- )(),(, yYxXc jiij represents the unknown coefficients obtained 

from the minimum total energy principle and the appropriate displacement 
functions which individually satisfy at least geometrical boundary 
conditions. 
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MATERIALS AND METHODS

We consider two rectangular plates, having the dimensions 
 210001000 mmba  , loaded by a uniformly forces having the weight 

intensity .q .
The initials values for the massif wood plate are:
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The initials values for the wood refuse plate are:
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Where:
E Young’s modulus.
g  thickness.
  the Poisson coefficients.

The boundary conditions for the plates with all sides simply 
supported are:

0,0  xMw for ax ,0
0,0  yMw for by ,0

The variational Ritz methods consist in application of the minimum 
potential energy theory. 

  the total potential energy of the plate.
We use for deflection the approximate expression:
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)(),( yYxX ji Represents functions who satisfies the geometrical 

boundary conditions and closely approximates the shape.
For the plates with all sides simply supported the shape functions 

have been choose like a product between two trigonometrically functions 
having distinct variables.

We represents the shape functions as an double infinite series:
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Using the minimum energy method it can be determinated the 
unknown coefficients .ijc

Solving a linear algebric system obtain from the minimum 
conditions 0 result the coefficients .ijc
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Solutions for the massif wood plate and refuse wood plate

The deformation energy is given by the relation between total energy 
and mechanical work:

UW 
W strain energy.
U  Kinetic energy.
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The first two derivates of deflection given by the variables yx, are:\
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the plate deformation energy expression is:
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the expression for mechanical work is:
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Replacing into the energy expression we obtain:
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Using the conditions 0



ijc
, results the equations system:
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For massif wood plate the plate rigidity is:

 ,1015625,0 9 cmdaND 
and for the wood refuse plate  cmdaND  81036458,0

The calculus for the maximum deflection values in the middle of the 
plates was made for 1i and 1j  at:
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The both plates are loaded by a uniformly forces having the intensity 
q . Also the weight work like a uniformly forces on the volume of each 
plate.

'
1w refuse wood plate deflection.

'
2w massif wood plate deflection.

'
1 refuse wood density.

'
2 massif wood density.
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In concordance with superposition principle the deflections for each 
plates having uniformly loading are:
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DISCUSSIONS AND CONCLUSIONS

We obtain for the displacement in the center of the refuse wood plate an 
admitted value which it can be calculated the efforts and the tension from any 
cross section of the plate. 

Using the plate made by refuse wood the conclusion are:
- the plates can be use for the light constructions to achieve the floors.
- reduce the weight of the construction;
- reduce the price of building;
- can be achieve in a lot of size and have an economic efficient.

Having the maximum values for deflections in the middle of the 
plates can be establish the dangerous sections and also the sectionals efforts 
(bending moments).

This comparative studies represents a mathematics mode to solve the plate
deflections and give us some information for them who help us to choose the 
adequate materials and the accepted loading thus to resists without the possibility
of the brake.
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Introduction


For the plate made by the refuse wood the calculus have been made similarly which a isotropic plate using the variational Ritz method. The both plates have simply supported all the edges and are loading with a uniformly forces having the intensity 
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The Ritz methods consist in selecting a suitable infinite series expression of the deflection which satisfies the geometrical boundary conditions, and satisfaction of the differential equation motion is not required.
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represents the unknown coefficients obtained from the minimum total energy principle and the appropriate displacement functions which individually satisfy at least geometrical boundary conditions. 

MATERIALS AND METHODS


We consider two rectangular plates, having the dimensions 
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The initials values for the wood refuse plate are:
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Where:
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The boundary conditions for the plates with all sides simply supported are:
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The variational Ritz methods consist in application of the minimum potential energy theory. 
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We use for deflection the approximate expression:
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For the plates with all sides simply supported the shape functions have been choose like a product between two trigonometrically functions having distinct variables.


We represents the shape functions as an double infinite series:
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Using the minimum energy method it can be determinated the unknown coefficients 
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Solving a linear algebric system obtain from the minimum conditions 
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The deformation energy is given by the relation between total energy and mechanical work:
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The first two derivates of deflection given by the variables 
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With the assumption that:
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For: 
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the expression for mechanical work is:
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Replacing into the energy expression we obtain:




[image: image46.wmf]×


×


=


P


8


4


D


ab


p




 EMBED Equation.3  [image: image47.wmf]-


÷


÷


ø


ö


ç


ç


è


æ


+


å


å


=


=


m


i


n


j


ij


b


j


a


i


c


1


1


2


2


2


2


2




 EMBED Equation.3  [image: image48.wmf]å


å


=


=


×


×


×


m


i


n


j


ij


j


i


c


ab


y


x


q


1


1


2


1


)


,


(


4


p







[image: image49.wmf]-


D


 the plate rigidity .
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Using the conditions
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For massif wood plate the plate rigidity is:
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and for the wood refuse plate 
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The calculus for the maximum deflection values in the middle of the plates was made for 
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The both plates are loaded by a uniformly forces having the intensity 
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. Also the weight work like a uniformly forces on the volume of each plate.
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In concordance with superposition principle the deflections for each plates having uniformly loading are:
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DISCUSSIONS AND CONCLUSIONS

We obtain for the displacement in the center of the refuse wood plate an admitted value which it can be calculated the efforts and the tension from any cross section of the plate. 



Using the plate made by refuse wood the conclusion are:


· the plates can be use for the light constructions to achieve the floors.


· reduce the weight of the construction;


· reduce the price of building;


· can be achieve in a lot of size and have an economic efficient.


Having the maximum values for deflections in the middle of the plates can be establish the dangerous sections and also the sectionals efforts (bending moments).


This comparative studies represents a mathematics mode to solve the plate deflections and give us some information for them who help us to choose the adequate materials and the accepted loading thus to resists without the possibility of the brake.
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