Vol. XIV, 2009

ADVANCED WATER TREATMENT TECHNOLOGIES

Ionescu Gheorghe-Constantin*, Daniela – Smaranda Ionescu

*University of Oradea, Universității street, code 410087 – Oradea, Romania <u>gheionescu@gmail.com</u>

Abstract

Residual water contains a series of pollutants, among which some are removed more or less during the conventional water treatment stages, while others are retained for a very short time or at all in the classical water treatment stations. The serious problems related to water protection led to some severe restrictions regarding the concentration level allowed in the purified effluent discharged in the natural outlets. The present paper briefly presents the advanced water treatment technologies frequently used in our country.

Key words: residual water, purified effluent, conventional sewage, wastewater treatment plants, removing.

INTRODUCTION

Residual water contains a series of pollutants, among which some are removed more or less during the conventional sewage treatment stages, while others are retained for a very short time or at all in the classical sewage treatment stations.

Table 1

Quality restrictions for CBO ₅ and O ₂ , in surface waters				
Water characteristics	Usage categories			
water characteristics	Ι	II	III	
O ₂ , [mgf/dm ³], minimum	6	5	4	
CBO ₅ , [mgf/dm ³], maximum	5	7	12	

Table 2

Maximum suspension quantities, possibly discharged in outlets, according to the dilution degree

Usage categories			
Ι	II III		Dillution degrees
Maximum suspension quantities [mgf/dm ³]			
20 -	40 25-60	30 - 100	0-20
40 – 1	60 - 15	0 100 - 250	20 - 50
100 – 3	300 150 - 450	250 - 750	50 - 150
300 - 1.0	000 450 - 1.50	750 - 2.500	150 - 500

The serious problems related to water protection led to some severe restrictions regarding the concentration level allowed in the purified effluent discharged in the natural outlets, restrictions that are shown in tables 1 and 2 [1, 6, 12].

After being mixed with residual water, the outlet water should have the pH between 6,5-9,0.

Identifying the existing pollutants in the mechanic-biologic discharged effluent and the effects they have on the environment is highly important in establishing the advanced treatment methods, in order to obey the quality standards in force. Table 3 shows the characteristics of residual water treated mechanic-biological, as well as the effects they have on the environment and human health.

Table 3

No	Pollutant	Effects			
1	Solid suspensions	They can cause sludge deposition or can interact with the outlet.			
2	Biodegradable organic compounds	They can deprive the outlets of oxygen resources.			
3	Nonmetals, metals, organic compounds, halogenated compounds, pesticides, herbicides, insecticides	They are toxic for people (cancerous) and for the aquatic environment.			
4	Volatile organic compounds	They are toxic for people, cancerous.			
	NU	TRIENTS			
5	Ammonia	It increases chlorine consumption; it can be turned into nitrates and during the treatment processes it can deprive the resources of oxygen; together with the phosphorous it leads to the development of parasitic aquatic mediums. It is toxic for fish.			
6	Nitrates	It stimulates the development of algae and aquatic mediums. With children, they can cause methemoglobinemia.			
7	Phosphorous	It stimulates the development of algae and aquatic mediums. It interferes with coagulation.			
	OTHER INORGANIC SUBSTANCES				
8	Calcium and magnesium	They increase water hardening and dissolved total solids.			
9	Chlorides	They give water a salty taste. They interfere with agricultural and industrial processes.			
10	Sulphates	Cathartic action			
	OTHER ORGANIC SUBSTANCES				
11	Surfactants	They cause foaming and interfere with coagulation.			

Pollutants typical for residual water treated mechanic-biologic and their effects

It should be mentioned that the potential effects of residual substances existing in mechanic-biologic effluents can vary significantly. Although solid suspensions and biodegradable organic compounds are retained especially through mechanic-biologic treatment, there are some instances in which extra retaining in imposed. Initially, around mid 60's, nitrogen and phosphorous compounds from residual water discharges have triggered attention due to their effect in accelerating the lakes eutrophication and stimulating the aquatic mediums. At the moment, in the countries where the treatment of residual water is very advanced, controlling the nutrients has become a common technique of residual sewage treatment, especially in the instances of refilling the subterranean water provisions.

Table 4

Means of reducing residual pollutants from residual water, through advanced treatment procedures

N o	Objective	Method	Effluent type subjected to advanced treatment	
1	Suspension retaining	Filtration	EM, EBD	
1	Suspension retaining	Screening	EBD	
2	Ammonia oxidation	Nitrification in biological stage	EM, EBD, EBND	
3	Reducing the nitrogen	Nitrification/de-nitrification in biological stage	EM, EBND	
4	Reducing the nitrates	Separate phase of de-nitrification in biological stage	EBND and nitrification	
5	Reducing P biologically	Reducing P at water surface	AUB, EM	
3	Reducing P biologically	Reducing P at sludge surface	NAR	
6	Biological methods of N and P simultaneous retaining	Reducing P and nitrification/de-nitrification in biological stage	AUB, EM	
	Reducing N by physical or chemical methods	Flash distillation	EBND	
7		Chlorination at breakpoint	EBND and filtration	
		Ions exchangers	EBND and filtration	
8	Reducing P by chemical	Chemical precipitation with metallic salts	AUB, EM, EBND, EBD	
8	addition	Chemical precipitation with lime	AUB, EM, EBND, EBD	
	Reducing the toxic	Adsorption on active coal	EBND and filtration	
9	organic components and the refractory organic	Activated sludge – powder active coal	EM	
	substances	Chemical oxidation	EBND and filtration	
		Chemical precipitation	AUB, EM, EBND, EBD	
		Ions exchangers	EBND and filtration	
1	Reducing the dissolved	Ultra filtration	EBND and filtration	
0	inorganic substances	Inverted osmosis	EBND and filtration	
		Electro dialysis	EBND, filtration and adsorption on coal	
1 1	Volatile organic compounds	Volatilization and flash distillation with gas	AUB, EM	

EM – effluent of mechanic treatment phase;

EBD - decanted effluent of biological treatment phase;

EBND - non-decanted effluent of biological treatment phase;

AUB - gross residual water;

NAR - recirculated activated sludge.

Nitrifying the residual water is also necessary in many instances for reducing the ammonia toxicity or reducing the impact on the oxygen resources in water courses or estuaries. Beginning with the 80's, a special attention is paid to nonmetals, metals, organic compounds, halogenated compounds, pesticides, herbicides, insecticides, and volatile organic compounds, all these pollutants being considered toxic for people and aquatic environment [1, 2, 3, 11].

Although in Romania the advanced treatment of residual water has become more important in the last 10 years, in the world, a series of techniques and technologies were researched, in order to insure that a treatment station effluent has characteristics corresponding to the admitted limits established by quality standards. Globally, for over 40 years, a great diversity of treatment technologies were studied, developed and applied for retaining the pollutants from residual water (suspensions, biodegradable organic substances, pathogenic germs, nutrients, organic or inorganic compounds with cancerous, mutagen, teratogenic action or with high toxicity, refractory substances, heavy metals, dissolved inorganic substances).

In table 4 are shown the means of reducing residual pollutants from residual water, through advanced treatment procedures.

Table 5

	COMBINATION	EFFLUENT QUALITY						
No		susp. (mg/l)	CBO ₅ (mg/l)	CCO (mg/l)	N total (mg/l)	N-NH ₃ (mg/l)	phosphates (mg/l)	turbidity (NTU)
а	Activated sludge and filtration on granular environment	4-6	<5-10	30-70	15-35	15-25	4-10	0,3-5
b	Activated sludge and filtration on granular environment and adsorption on coal	< 3	< 1	5-15	15-30	15-25	4-10	0,3-3
с	Activated sludge and nitrification in a single phase	10-25	5-15	20-45	20-30	1-5	6-10	5-15
d	Activated sludge, nitrification and de-nitrif. in separate phases	10-25	5-15	20-35	5-10	1-2	6-10	5-15
e	Activated sludge and salts addition	10-20	10-20	30-70	15-30	15-25	< 2	5-10
f	Activated sludge, salts addition, nitrification, de-nitrification and filtration	<5-10	<5-10	20-30	3-5	1-2	< 1	0,3-3
g	Biologic reduction of P at water surface	10-20	5-15	20-35	15-25	5-10	< 2	5-10
h	Biologic reduction of N and P at water surface	< 10	< 5	20-30	< 5	< 2	< 1	0,3-3

Levels of treatment attained with diverse combinations of procedures and individual
operations used for advanced treatment of used water

According to the method or the combination of methods chosen, various performances can be obtained regarding the residual pollutants retained during the advanced treatment stage. Table 5 shows the treatment levels (expressed through the concentrations of diverse residual pollutants in the "tertiary" effluent), attained with diverse combinations of procedures and operations used for advanced treatment of residual water.

PHOSPHORUS REMOVAL FROM RESIDUAL WATERS USING BIOLOGICAL MEANS

Lately, a special attention was paid to procedures for P removal using biological means, as alternative to chemical methods. P is retained in biological phase through incorporating procedures of orthophosphates, polyphosphates, and phosphorous linked organically in cellular tissue [1].

Total quantity of P removed is done according to the decanters produced effectively. P contained in cellular tissue is 5 times lower than N content in tissue.

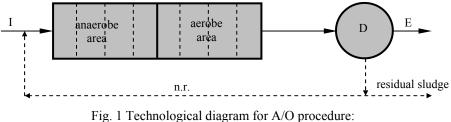
According to local environment conditions, real P matter is 7 to 3 times lower than N content from cellular tissue. On average, the quantity of P removed during secondary treatment through residual sludge can vary between 10-30% from influent quantity.

By using a biologic procedure for removing P, significant results can be obtained, outside this domain.

The concept of removing P by biologic methods means exposing the microorganisms to alternative anaerobe and aerobe conditions.

Exposition to alternant conditions determines microorganisms overstressing, so that the adsorption quantity exceeds normal levels. P is used not only for survival, synthesis and energy but it is also stored and used afterwards by microorganisms.

Sludge containing p in excess is either residual or removed in the lateral treatment flux (sludge line). Alternative exposition to anaerobe and aerobe conditions can be achieved either on water surface, or in the sludge recirculation process [2].


Specific procedures of biologic treatment used for P removal are:

- A/O procedure which implies P removal on water surface, in biologic phase;
- PHOSTRIP procedure implies P removal on sludge surface;
- Sequential tank procedure (B.S.) used for small quantities of residual water, on condition that is has functional flexibility, it allows retaining N and P.

A/O procedure (retaining P on water surface) [1]

A/O procedure (fig. 1) is used for retaining P combined with C oxidation from residual water. It is a biomass system in suspension ,,single-sludge" (a single tank, so single sludge), which combines consecutive anaerobe and aerobe areas.

For nitrification, the supply can be done by increasing the retention time needed in aerobe area. The sludge deposited is returned in the influent at the end of the tank and mixed with influent residual water.

I – influent; D – decanter; E – effluent; n.r. – recirculation sludge

Under anaerobe conditions, P contained in residual water and in the recirculated cellular mass is released as soluble phosphates. At this stage reducing partially the organic substances (as CBO_5) can be done. P is absorbed by the cellular mass in the aerobe area and is retained from fluid flow capacity into the activated sludge. P concentration in the effluent depends greatly on the ratio CBO_5 : P of residual water.

For ration higher than 10:1, concentrations of P soluble in the effluent under 1 mg/l can be obtained. When the ratio values are lower than 10:1, metallic salts should be added for obtaining low concentrations of effluent in P.

Phostrip procedure (removing P on sludge line) [1]

In this procedure (fig. 2), a part of recirculated activated sludge form biologic treatment is led in an anaerobe tank for P flash distillation. The retention time in this tank generally varies between 8 and 12 hours. P is released in the flash distillation tank, it gets out of the tank as supernatant and the activate sludge poor in P is returned in the aeration tank. Supernatant reach in P is combined with lime or other coagulant in a separate tank and it is unloaded in DS or in a separate flocculation decanting tank to separate solid suspensions. P is removed from the system through chemical precipitation. PHOSTRIP type systems associated with activated sludge ones can insure an effluent with a total content of P under 1,5 mg/l, before filtration.

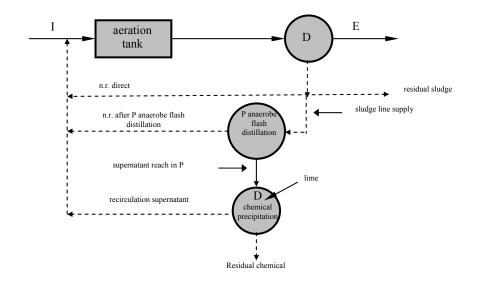


Fig. 2. Technologic diagram for Phostrip procedure: I - influent; D - decanter; E - effluent

Procedure with sequential functioning tanks

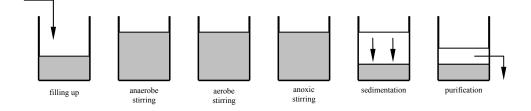


Fig. 3. System with sequential loading tanks

The system (fig. 3) can operate so that it insures any combination of C oxidation with N reduction and P removal. A simple representation of this system is shown in the figure above.

CONCLUSIONS

Advantages and disadvantages of biologic alternatives for removing phosphorous

Below is shown a general comparison of alternative procedures for removing P using biologic means [4]. Biologic methods provide more advantages regarding the integration in the nutrients removal process in the treatment stations. Because a great part of the procedures success depends on specific local conditions, it is recommended that pilot stations tests should be performed.

A/O procedure (retaining P on water surface)

Advantages: Relatively simple functioning compared to other procedures. Residual sludge has a relatively high concentration of P 3-5% and a fertilizing value. Hydraulic

retention time relatively short. In cases when only a part of P should be reduced, it can be supplemented with nitrification.

Disadvantages: It does not have the capacity to ensure separately the removal of some big quantities of N and P. Questionable performances of operation at low temperatures. It needs high values of CBO_5 : P ratio. Together with minimizing the retention time of cells in the aerobe medium, a higher value of oxygen transfer might be needed. Limited flexibility in operation.

Phostrip procedure (removing P on sludge line)

Advantages: It can be incorporated in the treatment stations with existent n.a. Flexible process. P removal process is not restricted by CBO₅: P. ratio. There are many installations like this in the USA. Significant lower consumption of chemical reactives than needed for chemical precipitation in biologic phase. It can lead to orthophosphates concentrations of effluent, under 1,5mg/l.

Disadvantages: It needs lime addition for P precipitation. It needs a high concentration of O_d mixture to prevent P release in the final decanter. Cleaning the lime deposits can be considered a maintenance problem.

Procedure with sequential functioning tanks

Advantages: The process is very flexible for combining N with P removal. The process is simple. The suspensions from the mixture should not be washed in the opposite direction of hydraulic flow.

Disadvantages: Convenient only for small flows. Extra units are needed. The effluent quality depends on the decantation easiness. The design data available are limited.

Reducing these constituents can be achieved with or without chemical addition when changing the tank's functionality. P can be removed by chemical addition with coagulation reactives or biologically, without coagulation reactives addition [3]. In the configuration shown above, releasing P and reducing CBO₅ can take place during anaerobe mixing phase and reducing P in the next phase of aerobe mixing. Modifying the reaction time, nitrification or N removal can be obtained. A complete cycle total time can vary from 3 to 24 hours. In anoxic phase, a source of C as support for de-nitrification is needed, represented either by an external source, or by endogen respiration of existing biomass.

REFERENCES

- 1. Ianculescu O., Gh.C. Ionescu, Raluca Racovițeanu, 2001, Sewerage and Purifying the Waste Water, Ed. Matrix Rom, București.
- 2. Ionescu Gh.C., 1997, Sewerage Volume I and II, Litografia Universității din Oradea.
- 3. Ionescu Gh.C., 1997, Sewerage Installations, Ed. Didactică și Pedagogică, R.A. București.
- 4. Moater Irina, Mihaela Olteanu, Otilia Cinteza, Cristiana Radulescu, Ionica Ionita, 2008, *Absorbtion of Some Alkyloxyethylene Pyridinium Chlorides at Solid-Water Interface*, Rev. Chim. (Bucureşti), nr. **59**, p. 168.
- 5. Stanojevic M., Al. Javovic, D. Radic, M. Pavlovic, 2008, Oxygen Transfer Efficiency of The Aeration Process in Refinery Waste Sewage treatment, Rev. Chim. (Bucureşti), nr. 59, p. 220.
- 6. Aitken, D., M., sept. 1993, *Batch biological treatment of inhibitory substrates.* Journal of Environmental Engineering, vol. 119.
- 7. Coulson, J. M., J. F. Richardson, J. R. Backhurst, J. H. Harker, 1980, *Chemical Engineering*, vol. 2. Ed. Pergamon Press.
- 8. Metcalf, I., C. Eddy, 1991, Wastewater engineering. Treatment, disposal and reuse. Mc. Graw Hill.
- 9. Wu Y.C. ianuarie 1987, Wet air oxidation of an aerobically digested sludge. JWPCF.
- 10. XXX: Chemical Engineers' Handbook, 1973, Ed. John Wiley, New York.
- 11. XXX: Memento technique de l'eau. 1980, 1990, 1998, Ed. Degremont, Paris, 1978.
- 12. XXX: EPA Anaerobic digester mixing Systems. 1987, JWPCF, 59, 3.