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Abstract

The rectangular flat plates, as well as the the angular ones in general, often intervene as strength
elements in the structures of civil and industrial constructions, their actual shape and support mode
being imposed by different conditions in the exploitation of the buildings, such as the lay-out of some
technological appliances, pipe crossing, embrasures in the stairs and so on.

Determining the solution of the plate’s differential equation with partial derivatives that satisfies all
the kinematic and static conditions on the considered boundary cannot always be rigurously
achieved. As a result, the variational methods represent in many cases, an effective tool in obtaining
the solution of the differential or partial derivative equation that can rigurously satisfy the differential
equation and partially the static boundary conditions.

Solving the differential equations using the variational methods consists in the replacement of the
unknown function that satisfies both the differential equation and the boundary conditions, with an
approximate analytical expression chosen in such a way as to approximate the sought out function as
well as possible, meaning that the deviation from the real value of the function should be minimum.
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INTRODUCTION

As for the historic record of the problem related to the study of flat plates, the first
results were out for publishing at the end of the 18th century, the beginning of the 19th
century, having Chladni E, Strehlke, Konig, R, Tanaka S, Rayleigh L, Ritz W and later on
Gontkevich V, Timoshenko S, Leissa as pioneers. Each of the above mentioned authors
have had significant contributions regarding the development of methods in order to solve
the plates and establish some rigurous solutions of their differential equations of
equilibrium.

The making of constructions, machines and different high-perfomance appliances,
whose functioning should take place in safety conditions, have required theoretical studies
of rich complexity, as well as practical experiments, within which the problem of their free
and forced vibrations represent an important category in the respective theme of research.
The importance of studying the vibrations of different deformable material systems (elastic
systems in constructions, technological equipments, mobile or stationary machines and
equipments), whose structures take in types of plates different in terms of shape, loading
mode and boundary conditions characterised by forced or free vibration motions and
carried on to the structure itself, has been made obvious by the system’s degradation in
time.

By means of the dynamic analysis of plates there has been an emphasis on the
complexity of the notion of dynamic calculus, which has the following as main working
stages:

- establishing the dynamic model considered for the first time
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- determining the normal vibration modes (self pulsations and vectors, respectively
the functions of vibration modes)

- determining the dynamic response in displacements and sectional stresses

- checking stability and strength conditions

MATERIALS AND METHODS
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Figure 2.
The object of study is determining the vibration modes, eigenvalues @y

(represented by pulsation parameter M,ij ) and the eigenﬁlnctionsq)ij (X, Y) .There is a

unitary presentation of the calculus algorithm of the variational method Galerkin-Vlasov for
a simply supported plate figure 1 having boundary conditions and different edge ratios

b

In determining these normal vibration modes, the variational method Galerkin-
Vlasov is adapted, being regarded as a particularity of the Bubnov-Galerkin method for the
dynamic infinite-dimensional systems.

The study of the rectangular plate started from the normal vibration mode
equation of the plates, that expresses their dynamic equilibrium, choosing for the plate
functions the products of the shape functions of the beams with the same boundary
conditions as the plate in X and respectively Yy direction figure 2.

a=2

The equation of the normal vibration modes

v4q)ij (X, ¥) = 4;@; (X, Y)
D (X, Y) =X, (X)-Y;(Y)
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in which V*is the double Laplacean operator, together with the boundary conditions,
represents a Sturm-Liouville problem, whose solving with the suggested method leads to
the charateristics of pulsations and vibration shapes.

The equation of the normal vibration modes, along with the homogeneous
boundary conditions describe a type Sturm-Liouville problem, [3], [4]. Solving type Sturm

—Liuoville problem allows the determination of inherent values ﬂ,ij , and the functions of

the vibration shapes of beams Yi = H. (x). Knowing the inherent values ﬂij, gives

pulsations eigenvalues @, , for i=123,.00.

The expression of the parameter of specific pulsations obtained by applying the
suggested method is

a b a b a b
X3 00 X,00ax- [ Y7 (y)dy+2- [ X 00 X, 00 [Y; () Y, (y)dy=+ [ X200 [}" (v)- Y, (y)ly
ﬂ” _0 0 0 0 0 0

>

[X: 00 [¥; iy

in which X;(X) si Y;(Y), are the eigenfunctions of the beams that have the same

boundary conditions as the plate on directions X respectively Y . Knowing the inherent

values i gives self-pulsations plate (eigenvalues) values of @,

1 D

The use of Galerkin-Vlasov method for determining the normal vibration modes of
the plates is reduced to the evaluation of the integrals defined above.

For the studied rectangular flat plate simply supported on the boundary, the
pulsation parameters for a number of 3 normal vibration modes are determined. The
obtained results regarding the pulsation parameters for the studied flat rectangular plate are
subsequently presented.

Rectangular flat plate simply supported on the boundary

Using the suggested method, we determine the values pulsation parameters
adequate to the normal vibration modes (1,1), (2,1), (3,1) and the plate edge ratios,

o= ab =1, a= ab =15 a= y =2 The values for the pulsation parameters are
presented in table 1.

Table 1.
Vibration Mode Mode Mode Mode
1,n (CR)) (3.D
VA e =1 19.7392 49,34 78,65
/Iij a=15 | 3207 61,68 111.03
v Aj a=2 49,34 78,95 128,3

Also, are presented the eigenfunctions of the plate having the same boundary
conditions as the beams on directions X respectively Y and 3 modes shapes. The

517



eigenfunctions are presented in tables 2, 3, 4 and the 3 mode shapes in figures no. 3, 4, 5.
The calculus was made by the author using Matlab 6.0.

Table 2.
Eigenfunctions Mode (1,1)
y/x [0 0,4 0,8 1,2 1,6 2 2.4 2,8 32 3,6 4
0 10 |0 0 0 0 0 0 0 0 0 0
04 10 ]0,095492 10,181636 |0,25 0,293893 [0,309017 ]0,293893 (0,25 0,181636 [0,095491 |-1,4E-08
0,8 [0 ]0,181636 [0,345492 |0,475528 |0,559017 |0,587785 |0,559017 [0,475528 |0,345491 |0,181636 |-2,7E-08
1,2 |0 10,25 0,475528 10,654509 [0,769421 0,809017 [0,769421 |0,654508 10,475528 |0,25 -3,8E-08
1,6 [0 ]0,293893 [0,559017 ]0,769421 [0,904509 [0,951057 |0,904508 [0,769421 [0,559017 |0,293893 |-4,4E-08
2 |0 ]0,309017 |0,587785 [0,809017 10,951057 |1 0,951057 [0,809017 [0,587785 |0,309017 |-4,6E-08
2,4 |0 |0,293893 [0,559017 |0,769421 [0,904508 |0,951057 [0,904508 |0,769421 [0,559017 |0,293893 |-4,4E-08
2,8 [0 10,25 0,475528 ]0,654508 [0,769421 |0,809017 |0,769421 |0,654508 [0,475528 |0,25 -3,8E-08
3,2 |0 ]0,181636 |0,345491 |0,475528 [0,559017 [0,587785 10,559017 [0,475528 [0,345491 |0,181636 |-2,7E-08
3,6 [0 ]0,095491 [0,181636 |0,25 0,293893 [0,309017 |0,293893 0,25 0,181636 [0,095491 |-1,4E-08
4 |0 |-1,4E-08 |-2,7E-08 |[-3,8E-08 |-4,4E-08 |-4,6E-08 |-4,4E-08 |-3,8E-08 |-2,7E-08 |-1,4E-08 |[2,15E-15
00,51
m0-0,5
m-1-0
Figure 3.
Table 3.
Eigenfunctions
Mode (2,1
y/x [0 |04 0,8 1,2 1,6 2 24 2,8 32 3,6 4
0 [0 |0 0 0 0 0 0 0 0 0 0
04 [0 [0,181636 |0,345492 10,475528 |0,559017 |0,587785 [0,559017 |0,475528 |10,345491 |0,181636 |-2,7E-08
0,8 [0 [0,293893 |0,559017 ]0,769421 [0,904509 [0,951057 [0,904508 |0,769421 |0,559017 [0,293893 |-4,4E-08
1,2 |0 [0,293893 |0,559017 |0,769421 [0,904508 |0,951057 |0,904508 |0,769421 |0,559017 |0,293893 |-4,4E-08
1,6 [0 [0,181636 |0,345491 |0,475528 |0,559017 |0,587785 [0,559017 |0,475528 |10,345491 |0,181636 |-2,7E-08
2 |0 |-1,4E-08 [-2,7E-08 |-3,8E-08 |-4,4E-08 |-4,6E-08 [-4,4E-08 [-3,8E-08 |-2,7E-08 |-14E-08 |2,15E-15
2,4 |0 [-0,18164 [-0,34549 |-0,47553 |-0,55902 |-0,58779 [-0,55902 [-0,47553 |-0,34549 |-0,18164 |2,73E-08
2,8 10 [-0,29389 [-0,55902 |-0,76942 |-0,90451 [-0,95106 [-0,90451 [-0,76942 |-0,55902 |-0,29389 |4,41E-08
3,2 10 [-0,29389 |-0,55902 |-0,76942 [-0,90451 |-0,95106 [-0,90451 [-0,76942 |-0,55902 |-0,29389 |4,41E-08
3,6 [0 [-0,18164 |-0,34549 |-0,47553 |-0,55902 [-0,58779 |-0,55902 |-0,47553 |-0,34549 |-0,18164 |2,73E-08
4 |0 |2,87E-08 |5,46E-08 |7,51E-08 |8,83E-08 |9,28E-08 |8,83E-08 |7,51E-08 |5,46E-08 |2,87E-08 |-4,3E-15
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Figure 4.
Table 4.
Eigenfunctions Mode (3,1)
vx_ [0 [04 0,8 12 1.6 2 2.4 28 32 3.6 4
0 0 0 0 0 0 0 0 0 0 0 0
04 [0 0,25 0,475528 0,654509 0,769421 0,809017 0,769421 0,654508 0,475528 0,25 -3,8E-08
08 [0 0,293893 0,559017 0,769421 0,904508 0,951057 0,904508 0,769421 0,559017 0,293893 -4,4E-08
12 |0 [0,095491 0,181636 0,25 0,293893 0,309017 0,293893 0,25 0,181636 0,095491 1 4E-08
16 |0 |-0,18164 -0,34549 0,47553 20,55902 20,58779 20,55902 0,47553 -0,34549 2018164 2,73E-08
2 0 -0,30902 -0,58779 -0,80902 -0,95106 -1 -0,95106 -0,80902 -0,58779 -0,30902 4,64E-08
24 |0 -0,18164 -0,34549 -0,47553 -0,55902 -0,58779 -0,55902 -0,47553 -0,34549 -0,18164 2,73E-08
28 [0 0,095492 0,181636 0,25 0,293893 0,309017 0,293893 0,25 0,181636 0,095492 -1,4E-08
32 |0 0,293893 0,559017 0,769421 0,904509 0,951057 0,904509 0,769421 0,559017 0,293893 -4,4E-08
36 [0 025 0,475528 0,654508 0,769421 0,809017 0,769421 0,654508 0,475528 0,25 3.3E-08
4 |0 |-43E-08 3,0E-08 1,1E-07 1,3E-07 1 4E-07 1,3E-07 1,1E-07 3,0E-08 4 3E-08 6,46E-15
0O0,5-1
0o0-0,5
m-0,5-0
@=-1--0,5

Figure 5.

DISCUSSION AND CONCLUSION

To validate the suggested method, we compare the achieved theoretical results
with the ones determined by other authors when applying the Levy method, Rayleigh
method and finite element method..

Ther is a presentation of the percentage deviations of the vibration parameters
determined by applying the suggested method in comparison to the ones determined by

other authors through the use of the analytical, variational and numerical methods.
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Table 5.

Pulsation parameters [ [
ﬂ’l 1 /121 ﬂ’Sl
Metoda propusa 19.7392 49,34 78,65
Polidor Bratu [4] 19,74 49,4 79,05
Levy Method 0,06 % 0,13 % 0,51 %
Szilard[5] 19,722 50,6 -
Rayleigh Method 0,08 % 2,5%
Szilard[5] 19,73 49,34 78,95
F.E.M. 0% 0% 0,31 %
Barsan [4] 19,739 49,350 78,973
0% 0,03 % 0,41 %
Janich [3] 19,71 - -
Rayleigh Method 0,14 %

From the analysis of present data, we note that for the rectangular flat plate
considered in this paper, the percentage deviations are in the limits of high precision.

For the rectangular flat plate simply supported on the boundary, the values of the
pulsation parameters determined by the suggested method are compared with the values
obtained by Szilard [5], when using the finite element method, respectively by Polidor
Bratu[4], who applied the trigonometric series method to solve the plate.

The fundamental pulsation parameters of the flat square plate determined with the
suggested method is equal to the one determined by Polidor Bratu [4], when applying the
trigonometric series method and by Szilard [4], who applied the finite element method.

For the other normal vibration modes considered, that is (2,1), (3,1), the
percenatge deviations of the pulsation parameteres determined by means of appplying the
suggested method are small, in comparison to the ones achieved by the authors in [4] and
[5]: between a minimum value of 0% and a maximum value of 2,5% for vibration mode
(2,1), respectively a minimum deviation of 0,31 % and a maximum one of 0,51 % for
vibration mode (3,1). By means of a clear, ordered and logical structuring of its chapters,
the paper tries to present the dynamic analysis of rectangular simply supported flat plate
subjected to free vibrations.

The content of the paper has been conceived and achieved in such a way as to
emphasize the essential theoretical aspects, along with the adequate physical and
mathematical subtilities and the actual problem in the practice of dynamic analysis of
rectangular flat plate. The paper contains not only information from Romanian and
worldwide field literature, supported and represented by illustrious proffesors and
researchers of the dynamic school in our country, but also personal contributions regarding
the determined dynamic characterisitcs that can be a valuable data base within subsequent
research.

From the study of field literature it has been noted that there is no data concerning
the results obtained by other authors regarding the values of the shape functions,
respectively the parameters of the rectangular plate pulsations and the pulsations proper by
means of applying the Galerkin-Vlasov variational method, a reason why the results
presented in the paper represent a novelty element brought by the author.
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