RESEARCH ON THE INFLUENCE OF WEED CONTROL ON THE SOYBEAN YIELD

Manea Dan Nicolae*, Ienciu Anișoara Aurelia*, Peț Ioan*, Ștef Ramona*, Cărăbeț Alin*

* University of Agricultural Scieces and Veterinar Medicine of the Banat Timişoara, Calea Aradului, no.119, Timişoara, Romania, e-mail: <u>manea dn@yahoo.com</u>

Abstract

Soy is known as a crop very sensitive to the presence of weeds, because initially slow growth rate and long growing season. Experience field has been placed in the experimental field of USAMVB Teaching Station Timisoara, during the years 2011 and 2012, being placed after the bifactorial experience subdivided parcels method, with 16 variants in III repetitions. Experimental factors were: factor a pre-emergent herbicides and factor b maintenance work + postemergent **herbicide**. In 2011, due to drought conditions, weed growth was relatively low, 159 weeds / m^2 , the most common species being: Setaria glauca, Echinochloa crus-galli, Amaranthus retroflexus şi Hibiscus trionum. The following year, the presence of weeds in soybean crop was more pronounced, 214 weeds / m^2 , predominantly the same species. The best harvest results in the two years were recorded in the variants: a_2b_4 -Stomp 330 EC 5 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing + Basagran 3 l/ha and a_3b_4 -Relay 2 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing + Basagran 3 l/ha and a_3b_4 -Relay 2 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing + Basagran 3 l/ha and a_3b_4 -Relay 2 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing the soybean yields obtained were correlated with the effectiveness of herbicides and agro-technical measures applied, and with the climatic conditions of the two experimental years, considered less favorable for this crop.

Key word: soybean, herbicides, weed control, production.

INTRODUCTION

Soybean is one of the main crops in the Western Plain of Romania, due to favorable soil and climatic conditions (Popa, 2006).

Soy contributes decisively to ensure protein on planetary scale and the production of best quality vegetable oil (Mohammadi, Amiri, 2011). In addition, a soybean plant is "green", "and" economically "" through large quantities of nitrogen fixed, and from the point of view of plant technology is valuable in any crop rotation system.

At the same time, soybeans are known as a very sensitive crop to weeds, in particular in the first part of the growing season, characterized by the slow growth of the plant. In our country, most soy is grown on different plots, strong weeding and unfavorable climatic conditions in some years, are responsible for the low yields obtained in this culture, well below biological potential of varieties cultivated (Berca, 1998). Weed control is one of the major maintenance works in order to obtain high yields of soybean (El-Gizawy et al., 2012).

The need to reduce as much the negative impact of weeds on crop, research and farming practice along with farmers have sought and created

technology to combat them. Therefore an experience was placed in order to study the effectiveness of pre-emergent and post-emergent herbicides through the production of soybeans.

Soybean yields obtained were correlated with the effectiveness of herbicides and agro-technical measures applied, and the climatic conditions of the two experimental years, considered less favorable for this crop.

MATERIAL AND METHODS

Cultivated variety was Triumph being placed in the midLSDe group of precocity. It has a high height (90-115 cm), broad beans (160-190 g) is falling, shaking, drought and disease (soybean mosaic burns, bacterial blight) resistant. It has a good production capacity (3900 kg / ha), high protein (37.5 to 42%) and fat (19-23%). The used herbicides were: Stomp 330 EC, Relay, Dual S 960 EC, Lexone, Agil, Basagran.

Experience field has been placed in the experimental field of USAMVB Teaching Station Timisoara, during the years 2011 and 2012, being placed after the bifactorial experience subdivided parcels method, with 16 variants in III repetitions, 48 experimental plots.

The area of a parcel was 24.30 m^2 .

Experimental factors were:

- Factor a: preemergent herbicides

a₁ - unherbicided preemergent;

a₂ - Stomp 330 EC (pendimetalin)-5 l/ha + Lexone (mertibuzin)-0,3 kg/ha

a₃-Relay (acetoclor)-2 l/h + Lexone (mertibuzin)-0,3 kg/ha;

a₄ - Dual S 960 (metolaclor)-2 l/ha+ Lexone(mertibuzin70%)-0,3 kg/ha

- *Factorul b*: maintenance work + postemergent herbicide

b₁ - unhoed, unherbicided post emergent;

b₂ -2 mechanical hoeing;

b₃ -2 mechanical hoeing + Agil (propaquizafop) -1 l/ha;

b₄ -2 mechanical hoeing + Basagran (bentazon)-3 l/ha.

Herbicides spraying was done with the portable device and incorporation of pre-emergent herbicides with combiner. Calculation of doses of herbicides and water were based on the size of each experimental plot. Determination of weed infestation degree was performed using quantitative methods - numerical, for each experimental variant (Chirilă, 1989).

After application of the herbicide, observations were made at regular intervals on the effectiveness of the treatment in the control of various species of annual and perennial weeds. In addition, careful observations were made on the selectivity of the herbicide for soybean plants. Each variant of the experiment was weighed and grain yield was reported at STAS. Production results were processed by the method of variance analysis.

RESULTS AND DISCUSSION

As it can be seen from the data presented in figure 1, the initial weed infestation in soy culture in the first experimental year was 159 weeds/m². The dominant weeds were the annual such as: *Setaria glauca* (21,3%), *Echinochloa crus – galli* (16,7%), *Amaranthus retroflexus* (15,4%) şi *Hibiscus trionum* (12,2%), and among perennials, *Convolvulus arvensis* (5,4%), *Sorghum halepense* (4,1%), *Cirsium arvense* (3,0%) şi *Rubus caesius* (1,7%). In total we identified 11 species of weeds.

In 2012, due to abundant rainfall in spring, the initially weeding degree present in the soybean crop was more pronounced, 214 weeds/ m^2 .

Dominant weeds were the annuals: Setaria glauca (18,5%), Amaranthus retroflexus (15,3%), Chenopodium album (12,4%) şi Echinochloa crus - galli (10,6%), and among perennials, Sorghum halepense (6,9%), Cirsium arvense (3,3%) and Convolvulus arvensis (2,5%). In total we identified 14 species of weeds.

Fig. 1. Initial state of weed infestation in soybean crop in two experimental years

The production increases resulting from the application of herbicides compared to version preemergent unherbicided are between 9,26 q/ha (Relay 2,0 l/ha + Lexone 0,3 kg/ha) şi 10,75 q/ha (Stomp 330 EC 5 l/ha + Lexone0,3 kg/ha), being statistically assured as significantly positive (Table 1).

Looking at the data in table 2 can be seen that postemergent herbicides and mechanical hoeing increases production in range of 8.93 q / ha (2 mechanical hoeing) and 12,82 q/ha (2 mechanical hoeing + Basagran 3 l/ha).

Table 1

	Unnatera	al analysis of factor a (pr	e-emergent nerbicides) soybea	an in 2011
	Variant	Production (q/ha)	Difference (q/ha)	Significance
	a ₂ -a ₁	22,81-12,06	+10,75	XXX
	$a_3 - a_1$	21,32-12,06	+9,26	XXX
	a ₄ - a ₁	21,42-12,06	+9,36	XXX
	a ₃ - a ₂	21,32-22,81	-1,49	00
	a ₄ - a ₂	21,42-22,81	-1,39	00
	a ₄ - a ₃	21,42-21,32	-0,10	-
I	LSD 5% = 0.91 q	/ha; LSD $1\% = 1.32$	q/ha; LSD 0,1%= 1,95	q/ha

Unilateral analysis of factor a (pre-emergent herbicides) sovbean in 2011

Table 2

Unilateral analysis of factor b (maintenance work+postemergent herbicides) soybean in 2011

Variant	Production (q/ha)	Difference (q/ha)	Significance
b ₂ -b ₁	20,14-11,21	+8,93	XXX
b ₃ -b ₁	22,24-11,21	+11,03	XXX
b ₄ -b ₁	24,03-11,21	+12,82	XXX
b ₃ -b ₂	22,24-20,14	+2,10	Х
b ₄ -b ₂	24,03-20,14	+3,89	XX
b4-b3	24,03-22,24	+1,79	Х
LSD 5% = 1,86 c	u/ha; LSD 1% =	2,91q/ha; LSD 0,1%=	= 3,95 q/ha

The combined action of the two experimental factors directly reflects on soybean production throughout production increases (Table 3).

Pre-emergent herbicides compared to preemergent unherbicided variant increases production up to 89,14% (Stomp 330 EC 5 l/ha + Lexone 0,3 kg/ha), 76,78% (Relay 2,0 l/ha + Lexone 0,3 kg/ha), respectively 77,61% (Dual S 960 2,0l/ha + Lexone 0,3 kg/ha).

Postemergent herbicides associated with two mechanical hoeing compared to the control variant (2 mechanical hoeing) achieved production increases of 10,43% (2 mechanical hoeing + Agil 1 l/ha), respectively 19,31% (2 mechanical hoeing + Basagran 3 l/ha).

Table 3

Comonica analysi	s of the tw	0 experi	memai ia	ciors rega	nunig soy	ocan prou	uction	11 2011
	Factor b : maintenance work + postemergent herbicides			Mean factor <i>a</i>		Wald		
Factor a preemergent herbicides	b ₁ unhoed unherbicided postem.	b ₂ 2 mech. hoeing	b ₃ 2 mech. hoeing + Agil (1 l/ha)	b ₄ 2 mech. hoeing + Basagran (3 l/ha)	Mean of production (q/ha)	Relative production (%)	differ q/ha	Signific
a ₁ – unherbicided preem	6,33	9,44	15,02	17,45	12,06	100,0	Mt	-
a ₂ – Stomp 330 EC (5 l/ha) +Lexone (0,3 kg/ha)	14,92	24,02	25,76	26,55	22,81	189,1	+10,7	xxx
a_3 Relay (2 l/ha) + Lexone (0,3 kg/ha)	11,37	23,26	24,41	26,25	21,32	176,7	+9,26	xxx
a_4 - Dual S 960 2 l/ha	12,22	23,85	23,76	25,88	21,42	177,6	+9,36	xxx

Combined analysis of the two experimental factors regarding soybean production in 2011

LSD 5% = 0,81 q/ha; LSD 1% = 1,22 q/ha; LSD 0,1% = 1,97 q/ha

Mean factor b: maintenance work + postemergent herbicides

filean nacion b. maintenance work * postemergent nerorenaes							
Average production (q/ha)	11,21	20,14	22,24	24,03			
Relative production (%)	55,66	100,00	110,43	119,31			
Yield differences (q/ha)	-8,93	Mt	+2,10	+3,89			
Significance	000	-	х	XX			
LSD5% = 1,57 q/ha; LSD 1% =2,38 q/ha; LSD 0,1% = 3, 29q/ha.							

Synthesis of production results (Table 4), shows a wide range of soybean production values between 6.33 tons/ha and 26.55 tons/ha.

The best results were registered in the variants: a_2b_4 -Stomp 330 EC 5 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing + Basagran 3 l/ha (26,55 q/ha), a_3b_4 -Relay 2 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing + Basagran 3 l/ha (26,25 q/ha), a_4b_4 -Dual S 960 - 2 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing + Basagran 3 l/ha (25,88 q/ha) and a_2b_3 -Stomp 330 EC 5 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing +Agil 1 l/ha (25,76 q/ha). Production increases achieved in comparison to the control (a_1b_2) were 17,11 q/ha, 16,81 q/ha, 16,36 q/ha respectively 16,32 q/ha, statistically assured as very positive significant differences.

Table 4

Variant	Absolute production (q/ha)	Relative production (%)	Difference in production (q/ha)	Significance
a_2b_4	26,55	281,25	+17,11	XXX
a3b4	26,25	278,07	+16,81	XXX
a_4b_4	25,88	274,15	+16,36	XXX
a2b3	25,76	272,88	+16,32	XXX
a3b3	24,41	258,58	+14,97	XXX
a_2b_2	24,02	254,45	+14,58	XXX
a_4b_2	23,85	252,65	+14,41	XXX
a4b3	23,76	251,69	+14,32	XXX
a3b2	23,26	246,40	+13,82	XXX
a_1b_4	17,45	184,85	+8,01	XXX
a1b3	15,02	159,11	+5,58	XX
a_2b_1	14,92	158,05	+5,48	XX
a_4b_1	12,22	129,45	+2,78	Х
a ₃ b ₁	11,37	120,44	+1,93	-
a_1b_2	9,44	100,00	Mt	-
a_1b_1	6,33	42,85	-11,11	000

Synthesis of experimental results on soybean production in 2011

LSD 5%= 2,05q/ha; LSD 1%= 3,46 q/ha; LSD 0,1%= 5,63 q/ha

In year 2012, after applying preemergent herbicides compared to unherbicided variant, production increases were achieved between 6.39 q/ha (a₄- Dual S 960 2 l/ha + Lexone 0,3 kg/ha) and 8,00 q/ha (Stomp 330 EC 5 l/ha + Lexone 0,3 kg/ha), statistically assured as very positive significant differences (Table 5).

Postemergent herbicides and mechanical hoeing bring production increases ranging from5,50 q/ha (2 mechanical hoeing) şi 10,64 q/ha (2 mechanical hoeing + Basagran 3 l/ha), as can be seen from table 6.

			Table 5
Unilat	eral analysis of factor a (pr	re-emergent herbicides) soyb	ean in 2012
Variant	Production (q/ha)	Difference (q/ha)	Significance
a ₂ -a ₁	17,90-9,90	+8,00	XXX
a ₃ -a ₁	16,32-9,90	+6,42	XXX
a ₄ - a ₁	16,29-9,90	+6,39	XXX
a ₃ - a ₂	16,32-17,90	-1,58	00
a ₄ - a ₂	16,29-17,90	-1,61	00
a4- a3	16,29-16,32	-0,03	-
LSD $5\% = 0,74$	q/ha LSD $1% = 1,11 q$	/ha LSD $0,1\% = 1,79 \text{ q/ha}$	ì

Table 6

Unilateral analysis of factor b (maintenance work + postemergent herbicides) solvean in 2012.

(1116	mitemanee work postern	ergent her oreraes) so joeun	
Variant	Production (q/ha)	Difference (q/ha)	Significance
b ₂ -b ₁	14,48-8,96	+5,50	XXX
b ₃ -b ₁	17,37-8,96	+8,41	XXX
b4-b1	19,60-8,96	+10,64	XXX
b ₃ -b ₂	17,37-14,48	+2,89	Х
b ₄ -b ₂	19,60-14,48	+5,12	XXX
b4-b3	19,60-17,37	+2,23	Х
LSD 5% = 2,13 q	/ha LSD 1% = 3,65	q/ha LSD 0,1%= 4,1	7 q/ha

The combined action of the two experimental factors directly reflects on soybean production by yield increases they bring (Table 7).

Table /	
---------	--

Comonica analysi	5 Of the tv	vo expern	nontai iac	ions reguit	ung 50 j	bean pi	ouuction	III 2012
_	Factor b : 1	maintenance herbi	work + pos cides	stemergent	Me factor	dia ului a		
Factor <i>a</i> preemergent herbicides	b ₁ unhoed unherbici ded postem.	b ₂ 2 mech. hoeing	b ₃ 2 mech. hoeing + Agil (1 l/ha).	b ₄ 2 mech. hoeing + Basagran (3 l/ha)	Mean of produ ction (q/ha)	Relati ve produ ction (%)	Yield differ. (q/ha)	Signific
a ₁ – unherbicided preem	4,80	7,52	13,48	13,80	9,90	100,0	Mt	-
a ₂ – Stomp 330 EC (5 l/ha) +Lexone (0,3 kg/ha)	11,24	17,79	20,10	22,45	17,90	180,8	+8,00	xxx
a ₃ Relay (2 l/ha) + Lexone (0,3 kg/ha)	9,03	15,46	19,38	21,40	16,32	164,8 4	+6,42	xxx
a ₄ - Dual S 960 2 l/ha + Lexone (0,3 kg/ha)	10,75	17,15	16,52	20,75	16,29	164,5	+6,39	xxx

Combined analysis of the two experimental factors regarding soybean production in 2012

LSD 5% = 0,74 q/ha; LSD 1% = 1,11 q/ha; LSD 0,1% = 1,79 q/ha

Mean	factor	b · maint	enance work	+ nos	temergent	her	hia	cid	les
Ivican	Iactor A	v. mam	Unance work	1 003	tomor gone	nor	UIV	~10	100

Average production (q/ha)	8,96	14,48	17,37	19,60
Relative production (%)	61,88	100,00	119,96	135,60
Yield differences (q/ha)	-5,52	Mt	+2,89	+5,12
Significance	000	-	XXX	XXX
	10/140	/1 LOD 0 1	0/ 107 /1	

LSD5% = 1,05 q/ha; LSD 1% = 1,40 q/ha; LSD 0,1% = 1,85 q/ha.

Pre-emergent herbicides compared to preemergent unherbicided variant bring increases of production up to 80,80% (Stomp 330 EC 5 1/ha + Lexone 0,3 kg/ha), 64,84% (Relay 2,0 l/ha + Lexone 0,3 kg/ha), respectively 64,54% (Dual S 960 2,0l/ha + Lexone 0,3 kg/ha).

Postemergent herbicides associated with two mechanical hoeing compared to the control (two mechanical hoeing), achieved production increases of 19,96% (2 mechanical hoeing + Agil 1 l/ha), respectively 35,60% (2 mechanical hoeing + Basagran 3 l/ha).

Synthesis of production results (Table 8) shows a wide range of soybean production values ranging between 4.80 q / ha and 22.45 q / ha.

Table 8

Variant	Absolute production (q/ha)	Relative production (%)	Difference in production (q/ha)	Significance
a_2b_4	22,45	299,33	+14,93	XXX
a_3b_4	21,40	284,57	+13,88	XXX
a_4b_4	20,75	275,93	+13,23	XXX
a_2b_3	20,10	267,29	+12,58	XXX
a ₃ b ₃	19,38	257,71	+11,86	XXX
a_2b_2	17,79	236,60	+10,27	XXX
a_4b_2	17,15	228,06	+9,63	XXX
a_4b_3	16,52	219,68	+9,00	XXX
a_3b_2	15,46	205,59	+7,94	XXX
a_1b_4	13,80	183,51	+6,28	XXX
a_1b_3	13,48	179,25	+5,96	XXX
a_2b_1	11,24	149,48	+3,72	XX
a_4b_1	10,75	142,95	+3,23	Х
a_3b_1	9,03	120,08	+1,51	-
a_1b_2	7,52	100,00	Mt	-
a_1b_1	4,80	63,83	-2,72	0

Synthesis of experimental results on soybean production in 2012

LSD 5%= 2,46 q/ha; LSD 1%= 3,29 q/ha; LSD 0,1%= 4,33 q/ha

This year too, the best harvest results were recorded in variants : a_2b_4 -Stomp 330 EC 5 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing + Basagran 3 l/ha (22,45 q/ha), a_3b_4 -Relay 2 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing + Basagran 3 l/ha (21,40 q/ha), a_4b_4 -Dual S 960 - 21/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing + Basagran 3 l/ha (20,75 q/ha) and a_2b_3 -Stomp 330 EC 5 l/ha + Lexone 0,3 kg/ha - 2 mechanical hoeing +Agil 1 l/ha (20,10 q/ha). Production increases achieved in comparison to the control (a_1b_2) were: 14,93 q/ha, 13,88 q/ha, 13,23 q/ha respectively 12,58 q/ha, statistically assured as very positive significant differences.

CONCLUSIONS

Researches conducted during the two experimental years, in the field of Agrotechnical discipline have led to the following conclusions:

- Soy is known as a very sensitive crop to the presence of weeds, due initially slow growth rate and long growing season, which requires the use of a set of measures that contribute to reducing the weed, with direct implications on production.
- In 2011, due to drought conditions, weed growth was relatively low, 159 weeds/m² the most common species being: *Setaria glauca, Echinochloa crus-galli, Amaranthus retroflexus* and *Hibiscus trionum*. The following year, due to abundant rainfall, weed infestation of soybean crop was more pronounced, 214 weeds/m², predominantly the same species.
- The best results for harvest in 2011 occurred in the variants: a₂b₄-Stomp 330 EC 5 l/ha + Lexone 0,3 kg/ha 2 mechanical hoeing + Basagran 3 l/ha (26,55 q/ha), a₃b₄-Relay 2 l/ha + Lexone 0,3 kg/ha 2 mechanical hoeing + Basagran 3 l/ha (26,25 q/ha).
- Next year, the best productions were recorded in the same experimental variants: a₂b₄-Stomp 330 EC 5 l/ha + Lexone 0,3 kg/ha 2 mechanical hoeing + Basagran 3 l/ha (22,45 q/ha), a₃b₄-Relay 2 l/ha + Lexone 0,3 kg/ha 2 mechanical hoeing + Basagran 3 l/ha (21,40 q/ha).
- Soybean yields obtained were correlated with the effectiveness of herbicides and agro-technical measures applied but also with the climatic conditions of the two experimental years, considered less favorable for this crop.

REFERENCES

- 1. Berca M., 2004, Managementul integrat al buruienilor, Ed. Ceres, București
- 2. Chirilă C., 1989, Cartarea buruienilor din culturile agricole, Ministerul Agriculturii, București
- Chirila S., Chirila P., 2008, Research regarding soybean crop critical period to weed harmfulness, Lucrari Stiintifice-Universitatae de stiinte Agro. Bucuresti. Seria A, Agronomie 51: 507-512
- 4. El-Gizawy N.Kh.B., FaLSDallah A.M., Hassanein A.M., Soliman I.E., 2012, Estimation of the critical period for weed control in soybean (Glycine max L) as influenced by plant density, J. Plant Production, Mansoura Univ., vol. 3(9) 2375-2394.
- 5. Lăzureanu A., D. Manea, Gh. Cârciu, S. Alda, 2006, Agrotehnică aplicată, Ed. Eurobit, Timișoara
- 6. Mohammadi G.R., Amiri F., 2011, Critical period of weed control in soybean (*Glycine max*) as influenced by starter fertilizer, AJCS 5(11):1350-1355
- 7. Pîrşan P., 2006, Fitotehnie cereale şi leguminoase pentru boabe, Editura Eurobit, Timişoara
- 8. Popa A., 2008, Studies concerning the impact of fertilisation on protein and oil content in a soy cultivar assortment, Research Journal of Agricultural Science, Vol. 40 (1):169-172
- 9. Slonovschi V., M. Niță, A. Nechita, 2001, Prezent și viitor în combaterea buruienilor, Editura Ion Ionescu de la Brad, Iași
- Sylvestre Habimana, K.N. Kalyana Murthy, B.C. Shankaralingappa, M.T. Sanjay, C. Ramachandra, 2013, Efficiency and economics of weed control with pre and post-emergence herbicides in soybean (*Glycine Max L.*), Asian Journal of Plant Science and Research, 2013, 3(4):18-20
- * * *, 2011, Codexul produselor de protecția plantelor omologate pentru utilizare în România. Ed. Carmel Print. Arad