RESEARCH REGARDING THE CHEMICAL FERTILIZATION OF THE WINE GROWING PLANTATION IN A LONG TERM TRIAL

Cheregi Viorel *

*University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048 Oradea; Romania, e-mail <u>viorel.cheregi@yahoo.com</u>

Abstract

The paper based on the research carried out in a long term trial (2002-2012) placed in Biharia, Bihor county. The cultivar used: Fetească Regală

The long term application of the chemical fertilizers has led to an increase crop towards the non fertilized soils only if the yearly N150, P150 and K150 mixture was used or only if N 100 has been exclusively used, while huge doses of fertilizers have led to a lack of Fe and K, in the case of the nitrogen fertilization, to a lack of N and Zn in the case of the phosphorus fertilization and to a lack of Mg in the case of the potassium fertilization. These fertilizers have diminished the vigor, the fruit bearing, the resistance quality and the longevity of the vines.

The reaction, in time, of the grape vine to a long term application of chemical fertilizers has always been favorable at the NPK mixture and at the N element applied exclusively. Through the exclusive application of the phosphorus the reaction was favorable only in the first 4 years, through the potassium application the reaction was favorable in the first 6 years, when the crop was superior to the crop realized by nitrogen application. The exclusive application of the nitrogen has led to a crop cease after 9years. The exclusive application of the phosphorus and of the potassium has led to a progressive decrease of the crop far below the crop obtained on the non fertilized soil, after 8 years of utilization.

Key words : chemical fertilization , wine growing plantations

INTRODUCTION

In order to obtain a superior production, both in quantity as well as in quality, on the intensive type of wine growing production, in conditions of high economic efficiency, it is necessary to adopt a rational system of soil maintenance, a system which is able to eliminate the risk of environment pollution and the risk of wine growing pollution.

The research upon the chemical fertilization has been done over a period of 10 years.

The experience related to the long term appliance of the chemical fertilizer with N, P, K has been surveyed between the years 2002-2012 on an area having Fetească Regală, clon 21 planted on it, grafted on Kober 5BB. The plantation has been set up in 1993, at a distance of 2x1.2 meters so there were 4167 vines on a whole hectare.

The long term application of thr chemical fertilizers has led to an increase crop towards the non fertilized soils only if the yearly N150, P150 and K150 mixture was used or only if N 100 has been exclusively used.

MATERIAL AND METHOD

The experience related to the long term appliance of the chemical fertilizer with N, P, K has been surveyed between the years 2002-2012 in Biharia an area having Fetească Regală, clon 21 planted on it, grafted on Kober 5BB. The plantation has been set up in 1993, at a distance of 2x1,2 meters so there were 4167 vines on a whole hectare.

Tabel 1

The experimentation chart had 20 alternatives us it follows:			
V1 - N50	V6 - N300	V11 – P250	V16 - K200
V2 - N100	V7 – P50	V12 - P300	V17 – K250
V3 - N150	V8 – P100	V13 -K50	V18-K300
V4 - N200	V9 – P150	V14 - K100	V19 – N150, P150, K150
V5 –N250	V10 - P200	V15 - K150	V20 – N0, P0, K0

The experimentation chart had 20 alternatives as it follows:

V is the Romanian for alternative.

The disposal of the alternatives in the field has been done in a Latin rectangle with 4 repetitions. The chemical fertilizers have been applied at a depth of 16 -18 cm in the same time when the spring ploughing was done.

The observations, determinations and analyses referred to the: water stability of the aggregates from the soil; to the soil humidity; to the pH in watery extract; to the humus; to the N, P, K, from the system soil-plant; to the number of bacteria and fungi from the soil; to the herbicide remains from the soil and plant; to the vigor and the longevity of the vines; to the production of grapes and its quality (sugar and acid aspect of the must), etc.

Experimentation conditions

During the experimentation period, the rain chart has registered superior values versus the normal value over a period of 50 years. The distribution of the rains and the frequency of the years with optimum conditions for natural grassing is presented in *Table 2*

Table 2

	conditions for covering cultures during the experimental period.				
Period	Average rains	Variation limits	Frequency of the years with		
	mm	mm	optimum conditions %		
Yearly	698	473 -1000	50		
Vegetation period	465	248 -735	40		
Spring	182	83 - 393	30		
Summer	227	70 - 369	20		
Autumn –winter	289	157 -528	60		

Distribution of the rains and the frequency of the years with optimum conditions for covering cultures during the experimental period.

During the vegetation period 66% of the yearly rains have fallen. In spring time 25% of the rains have been registered, 35% in summer and 40% in autumn, out of the total yearly rains.

The soil from the experimented lot is brown-red, with a content of 1,9% of humus.

RESULTS AND DISCUSSIONS

The effect determined by the long term application of chemical fertilizers with N, P, K, on wine growing plantations are shown in Table 3. Table 3

Effects determined by the lo	ong term application of chemical fertilizers with N, P,
K. on wine growing plantations	(the Fetească Regală sort, clon 21, 2002-2012)

Determination	Non fertilized soil	N300	P300	K300
Physics and chemistry of the soil				
Water stability of the soil aggregates at a:				
Depth of 0-10cm	79	88	80	72
Depth of 0-60cm	80	81	81	79
pH in the water	7.9	7.6	7.8	7.7
Humus %	1.8	2.0	1.6	1.9
N-NH4 (mg/100g of soil)	0.5	1.2	0.5	0.4
N-NO3 (mg/100g of soil)	0.6	5.3	0.4	0.6
N-NH4NO3 (mg/100g of soil)	1.1	6.5	0.9	1.0
PAL (mg/100g of soil)	9.0	6.0	84.0	16.0
KAL (mg/100g of soil)	20.0	13.0	21.0	66.0
Microbiology of the soil				
Bacteria (106 /g of dried soil)	287	321	147	234
Fungi (103 /g of dried soil)	88	290	136	118
N remains (mg/100g of soil)	-	5	-	-
P remains (mg/100g of soil)	-	-	75	-
K remains (mg/100g of soil)	-	-	-	43
Intensity and quality of the mineral nutrition				
N, totalized % from the organs of the vine	4.03	6.91	2.52	3.77
P, totalized % from the organs of the vine	0.84	0.56	1.24	0.61
K, totalized % from the organs of the vine	7.84	5.68	8.64	8.71
Totalized global nourishment	12.71	13.15	12.40	13.09
Vigor, fruit bearing resistance and longevity of the vis	nes			
Fresh phyto weight of wood and leaves (kg/vine)	0.6	1.3	0.5	1.1
Grape production (tons/hectare)	13.2	15.4	11.5	14.9
Relative production towards the non fertilized soil	100	116	88	105
Must sugar (g /l	206	181	211	217
Must acidity (g/1 of H2SO4)	4.1	4.6	4.1	4.2
Frequency of the vines with flouring attack (%)	-	Fe	Zn	Mg
Gaps from the plantation at the age of 25 years (%)	3	11	7	4

The N fertilizers and to a lower extent the P ones, have increased the water stability of the soil, whereas the K fertilizers have deteriorated it.

The reaction of the soil has been diminished to a certain extent by applying huge doses of N.

When the P fertilizers were applied the humus content from the soil decreased. The N and K fertilizers have led, in time, to a certain increase of the humus content in the soil.

The number of bacteria and fungi from the soil was bigger when the N and K fertilizers were used.

The remains of the chemical fertilizers resulted after a long term application of the fertilizers in maximum doses (300 grams/hectare), have been of 5 mg of N, 75 mg of P and 45 mg of K for 100 grams of soil. These fertilizers have negatively influenced the resistance, the quality of the wine growing plantation and the longevity of the vines. These fertilizers also led to a lack of Fe during the nitrogen fertilization, to a lack of Zn during the phosphorus fertilization and to a lack of Mg during the potassium fertilization when the respective fertilizers have been applied in huge, exaggerated doses.

The chemical fertilizers have specifically influenced the intensity and the quality of the mineral nutrition with nitrogen, phosphorus and potassium. The global nourishment has been dominated by N in what the nitrogen fertilizers were concerned, by P for the phosphorus fertilizers and by K for the potassium ones.

The chemical fertilizers with N and K have positively influenced the vigor of the vines and the grape production, while the P fertilizers have diminished them. The content of the sugar in the must has been superior at the alternatives fertilized with P and especially to those fertilized with K.

The synthesis of the production results registered under the influence of the long term application of the chemical fertilizers (2002-2012) is presented in Table 4.

Table 4

Alternative	Grape production Tons/hectare	Relative production towards the non fertilized soil	Statistical signification
N50	15.2	114.8	
N100	17.2	129.7	**
N150	17.0	128.4	**
N200	16.9	128.1	**
N250	16.0	120.8	*
N300	15.4	116.4	
P50	14.3	107.8	
P100	12.7	95.9	
P150	11.8	89.3	
P200	11.7	88.5	
P250	11.6	88.0	
P300	11.5	87.7	
K50	11.4	85.9	
K100	12.3	92.5	
K150	12.9	97.4	
K200	13.4	101.0	
K250	13.5	101.4	
K300	13.9	105.3	
N150 P150 K150	18.8	141.6	***
Non fertilized soil	13.2	100.0	
X*	14.1	106.4	

Synthesis of the production results registered under the influence of the long term application of the chemical fertilizers (The Fetească Regală sort, clon 21, 2002-2012)

LSD 5% = 2.6 tones/hectare; LSD 1% = 3.4 tones/hectare; LSD 0,1% = 4.3 tones/hectare

A high level of crop was obtained for the types N150, P 150, K150 with an increase of 41.6 %, a very significant increase, followed by the N 100 type with an increase of 29.7 %, distinctively significant towards the non fertilized soil. Low increases of production, insignificant ones, have been obtained for P 150 and for K150-300.

Only the NPK and the N fertilizers have ensured the rise of the grape production and its maintenance at a high level during the experimentation period.

After 10 years of exclusive application, the N fertilizers have led to a cease of the grape production. The P and K fertilizers led to a production superior to the production realized with the help of the N fertilizers in the first 4-5 years of application; still, after 10 years of application, the grape production for the respective alternatives was situated under the production obtained on the non fertilized soils.

CONCLUSIONS

The long term application of the chemical fertilizers has led to an increase crop towards the non fertilized soils only if the yearly N150, P150 and K150 mixture was used or only if N 100 has been exclusively used, while huge doses of fertilizers have led to a lack of Fe and K, in the case of the nitrogen fertilization, to a lack of N and Zn in the case of the phosphorus fertilization and to a lack of Mg in the case of the potassium fertilization. These fertilizers have diminished the vigor, the fruit bearing, the resistance quality and the longevity of the vines.

The reaction, in time, of the grape vine to a long term application of chemical fertilizers has always been favorable at the NPK mixture and at the N element applied exclusively. Through the exclusive application of the phosphorus the reaction was favorable only in the first 4 years, through the potassium application the reaction was favorable in the first 6 years, when the crop was superior to the crop realized by nitrogen application. The exclusive application of the nitrogen has led to a crop cease after 9 years. The exclusive application of the phosphorus and of the potassium has led to a progressive decrease of the crop far below the crop obtained on the non fertilized soil, after 8 years of utilization.

A correct evaluation of the effects determined by a long term practice of the different chemical fertilization systems of the soil on wine growing plantations (10 years) and a correct evaluation of the possibilities and of the limits of exclusive applications of the soil works, of the herbicides, of grassing, and of fertilization with potassium and phosphorus needs a systematic use, in an ecological concept, of the different technical solutions which the intensive type wine growing has.

REFERENCES

- Alexandrescu, I., Oşlobeanu, M., Piţuc, P. Mică enciclopedie de viticultură. Editura Glasul Bucovinei, Iaşi, 1994.
- 2. Baniță, P Viticultură pe nisipuri. Editura Ceres, București 1986
- 3. Bernaz, Gh. Via familia. Editura M.A.S.T., București 2003.
- Bernaz, Gh., Dejeu, L. Fertilizarea viilor şi întreţinerea solului în concepţie ecologică. Editura Ceres, Bucureşti 1999.
- 5. Casteran P., 1982, Les techniques d'entretien du sol, Vititechnique, 57
- 6. Cheregi, V Lucrări practice la viticultură generală-horticultură. Editura Universității din Oradea, 2000.
- Cheregi, V Lucrări practice la viticultură și vinificație-agronomie. Editura Universității din Oradea, 2000.
- 8. Cheregi, V Viticultură ecologică. Editura Universității din Oradea, 2003.
- 9. Cheregi, V Viticultură specială. Editura Universității din Oradea, 1998.
- 10. Cheregi, V Viticultură. Editura Universității din Oradea, 2003.
- 11. Cheregi, V. Lucrări practice la ampelografie. Ed. Univ.din Oradea, 2000.
- 12. Cheregi, V. Practicum de viticultură, Ed. Universitații din Oradea, 2013
- Cheregi, V. Viticultură generală (ediție revizuită și adăugită), Editura Universitații din Oradea, 2013
- 14. Condei Gh., Cătănescu V., Papacostea P., Ghinea L., 1987, Abordarea ecologică a sistemului integrat de întreținere și fertilizare a solului din plantațiile viticole intensive, Buletinul I.V.V., 4 (1)
- 15. Cotea, Victoria, Cotea, V. V. Viticultură, ampelografie și œnologie. Editura Didactică și Pedagogică, R. A., București, 1996.
- 16. Ionescu P., Ionescu P., Vladu Ileana, Condei Gh., Vladu Cr., 1986,- Particularități ale unor procese fiziologice ale viței determinate de sistemul de întreținere a solului și fertilizare
- 17. Mihaleche L., Oşlobeanu M., Macici M., Grecu V., 1984,-Soluții oferite de cercetarea științifică în vederea creșterii potențialului productive al plantațiilor viticole și a reducerii consumurilor energetic.