COMPARATIVE STUDY ON THE RECOVERY OF ZINC, CADMIUM AND LEAD CATIONS FROM WASTE WATERS USING PRECIPITATION METHOD

Gavris Georgeta *, Stoia Marcela **, Petrehele Anda Ioana Gratiela *, Fodor Alexandrina *

 *University of Oradea, Faculty of Sciences, 1 University Str., 410087, Oradea, Romania, e-mail: andapetrehele@yahoo.com
**Polytechnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 2 P-ta Victoriei, Timisoara, Romania

Abstract

This paper contains a comparative study between recovering of zinc, cadmium or lead cations from waste waters from industries. Zn^{2+} , Cd^{2+} and Pb^{2+} cations were precipitated as oxalate salts. In all experiments, concentrations of Zn^{2+} , Cd^{2+} and Pb^{2+} in initial solution were less than 1 g L⁻¹, so these often resulted from waste waters. Optimum conditions (pH, temperature, reagent excess) for recovery of these cations as oxalates were determined, using 1 N oxalic acid as precipitation reagent and NaHCO₃ as pH adjuster. Recovery yield of all studied cations were over 95% and finally their concentration in solution were under 5 mg L⁻¹. Crystalline structures of isolated oxalates, ZnC_2O4 ·2H₂O, CdC_2O4 ·3H₂O and PbC₂O₄, were proved with FT-IR, thermogravimetry and SEM methods. The presence of crystallisation water and the number of water molecules in the composition of ZnC_2O4 ·2H₂O and CdC_2O4 ·3H₂O were recorded in TG-DTA-DTG curves. Decomposition temperatures were typical for these oxalate salts.

Key words: zinc, copper, lead, waste waters, recovery

INTRODUCTION

Waste waters with high concentration of zinc, cadmium and lead cations can result after discharge waters (Ahmed R. et al. 2006) from electronic (McLay W. J. et al, 2000), galvanic (Matlock M.M. et al., 2002), aeronautical industries (Abd El-Moniem et al., 2005), paints and pigments industry based on heavy metals compounds (Hagen T., et al, 2004) and also from the extraction and processing of non irons minerals (Ahmad S.et al, 2002, Burtică, G. et al. 2000, Feng J et al., 2007). Concentrations of these cations in waste waters depend significantly by technological recovering stage (Mahvi A. H. et al., 2005, Poon C. P, 1984).

The recovery of Zn^{2+} , Cd^{2+} and Pb^{2+} using classic methods like chemical neutralisation, coagulation(Marder L. et al., 2003). , ionic exchange, adsorption (Srinivasa, K.R. et al, 2002), electrodylise (Huang H. et al., 2009) using just now was difficult to achieve. Gavris et al. (Gavris G. et al., 2005, Gavris G. et al., 2006) published before similar studies for zinc, cadmium and lead cations

with concentrations in range 10–100 mM, and using NaOH solutions as pH regulator (Gavris G. et al., 2008). Unfortunately, waste waters from the most industrial processes contain zinc, cadmium or lead cations in concentration under 1 g L⁻¹. For this reason, we proposed to improve the precipitation with 1 N oxalic acid, using NaHCO₃ as pH adjuster, for solutions of Zn^{2+} , Cd^{2+} and Pb²⁺ with concentrations less than 1 g L⁻¹ (~3.0 mM).

Recovery yield (%) of studied cations as oxalate was calculated with next formula (1):

$$\alpha,\% = \frac{C_{i,Me^{2+}} - C_{f,Me^{2+}}}{C_{f,Me^{2+}}} \cdot 100 \tag{1}$$

 α is recovery yield (%)

 $C_{i,Me}^{2+}$ is initial concentration of the cation (mg L⁻¹) in solution before the precipitation with oxalic acid

 $C_{f,Me}^{2+}$ is final concentration of the cation (mg L⁻¹) after the precipitation and the isolation from solution as oxalate.

MATERIAL AND METHODS

Reagents used in all experiments were high chemical purity and their solutions were prepared only with bidistilled water. In samples, Zn^{2+} , Cd^{2+} and Pb^{2+} concentrations were determined with spectrophotometric and AAS methods. The pH monitoring during the experiments was carried out with Multi 720 Inolab series WTW equipment. Cation concentrations were determined with both T-60 UV-VIS model spectrophotometer and AAS Thermo Electron M Series M5 Dual and STAT accessory – atomic capture according to SR ISO 8288 (Cordaş, E. et al, 1998). Thermogravimetric analyses were performed with a derivatograph Paulik Erdely 1500 C MOM Budapest, with at heating speed by 5°C min⁻¹, in the range 20-500°C and with α -Al₂O₃ as reference material in static air stream. The FT-IR spectra were recorded with a JASCO 430 FTIR spectrometer, KBr pellets, in range 400–4000 cm⁻¹.

Three solutions of Zn^{2+} , Cd^{2+} and Pb^{2+} by 1 g L⁻¹ concentration were prepared from ZnSO4·7H₂O, Cd(NO₃)₂·4H₂O and Pb(NO₃)₂ salts. Stoechiometric mixtures between 50 mL (0.165 mmol) 1 g L⁻¹ Zn²⁺ solution and 1.53 mL (0.165 mmol) 1N oxalic acid were prepared to 20°C, under continuous stirring for 10 minutes, to different pH values: 1.0, 2.0, 3.5, 4.0, 4.5, 5.5 and 5.7. The pH values were adjusted with 2%, 5% and 10% NaHCO₃ solutions. Precipitates were filtrated and were brought to 200 mL and then Zn²⁺ concentrations were determined. Experiments were repeated in the same mode for 50 mL Cd^{2+} (0.162 mmol), respectively for 50 mL Pb^{2+} (0.151 mmol). The recovery yield (%) of Zn^{2+} , Cd^{2+} and Pb^{2+} cations as oxalates from solutions to different pH values were recorded in Fig. 1.

Fig. 1 The variation of recovery yield (%) for Zn^{2+} , Cd^{2+} and Pb^{2+} with pH

In Fig. 1 can see that the highest recovery yield of all studied cations after precipitation with oxalic acid was achieved to pH 5.0-5.7. In this range, the recovery yield was 52.94% for Zn²⁺, 93.25% for Cd²⁺ and 96.53% for Pb²⁺.

Further, Mixtures between each studied cation and 1 N oxalic acid added in 10%, 20%, 50%, 80% and 100% excess, kept to 20°C, under permanently mixing, for 10 minutes, at pH 5.5. In Fig. 2 plots of yield variation with oxalic acid excess were shown. Solutions and precipitates resulted after experiments were analysed.

Fig. 2. The variation of recovery yield for Zn²⁺, Cd²⁺ and Pb²⁺ with excess of oxalic

The excess of oxalic acid influenced slowly the recovery yield of cadmium and lead cations, but an excess more 50% increased the recovery yield of zinc (Fig. 2).

For determination of optimal temperatures for separation of each cation, in reaction mixture, 1N oxalic acid was added in 100% excess. Experiments were performed to pH 5.5, for 10 minutes at the following temperatures: 20°C, 40°C, 60°C and 80°C. Variations of recovery yield (%) with temperature for all studied cations were plotted in Fig. 3. Precipitates were filtrated and were analysed. The concentration of cations in solutions was determined too.

Fig.3 The variation of recovery yield (%) of Zn²⁺, Cd²⁺ and Pb²⁺ with temperature

The recovery yield of zinc (Fig 3) increased with temperature and became maximal at 80°C (95.56%). In Fig. 3 was shown that the recovery yield of cadmium was very good in range 20–60°C. The slight decrease of yield from 96.8% at 60°C to 93.25% at 80°C was due to increase of the ionic force in solution caused by excess of oxalic acid. Instead, the recover yield of lead cation preserved over 99% in whole temperatures range.

RESULTS AND DISCUSSION

Data from thermogravimetral analysis of precipitates separated from Zn^{2+} , Cd^{2+} and Pb^2 solutions were recorded in Table 1. As can be seen in TG curves, the weight lost occurred in two steps for zinc and cadmium salts and in a single step for lead salt. In the first step, under 140°C, were lost crystallisation water molecules from ZnC_2O_4 · $2H_2O$ and CdC_2O_4 · $3H_2O$ and appeared as an endothermal process in DTA curves. Exothermal processes around 350°C, for all studied precipitates, were assigned to damage of crystalline structures and

was associated with a second weight lost in TG curve due to decomposition of oxalates to metal oxides, CO and CO₂ (Xiong Y. et al., 2013).

Table I

Compounds	DTA		DTG		TG	
	Endothermal (°C)	Exothermal (°C)	(°C)		(% weight)	
ZnC2O4·2H2O	140	370	140		19	57
CdC ₂ O ₄ ·3H ₂ O	80	320	85	318	21	49.5
PbC ₂ O ₄	-	350	-	350	-	24.4

Thermogravimetral analysis of ZnC₂O₄·2H₂O, CdC₂O₄·3H₂O and PbC₂O₄

In FT-IR spectra of ZnC₂O₄·2H₂O (Wladimirsky A et al., 2011), CdC₂O₄·3H₂O and PbC₂O₄ (Mancilla N. et al., 2009) were obtained characteristic vibrational bands for oxalate anion (Deshpande A. S. et al., 2001). Infrared bands of ZnC₂O₄·2H₂O spectra were recorded in Fig. 5 and were assigned to following bands (Parekh B.B. et al., 2008): v(O-H) to 3377 (b, vs), v_{as}(C-O) to 1630 (vs), v_s(C-O) and v_s(C-C) overlapped to 1363 (s), v_s(C-O) and δ (O-C-O) overlapped to 1315.5 (s), v_s(C-C) and δ (O-C-O) overlapped to 824 (s), ρ (H₂O) to 750 (s) and δ_{ring} to 619 (m), 494 and 451 cm⁻¹.

Fig. 4 FT-IR spectra of ZnC₂O₄·2H₂O

In FT-IR spectra of CdC₂O₄·3H₂O recorded in Fig. 6 were occurred next vibrational bands: v(O-H) to 3559 (b, vs), v(C-O) to 1607 (vs), v_s(C-O) and v_s(C-C) overlapped to 1381 (s), v_s(C-O) and δ (O-C-O) overlapped to 1313.5, v_s(C-C) and δ (O-C-O) overlapped to 777 (s), and δ _{ring} to 600 and 523(m) cm⁻¹. Vibrational band of v_s(C-C) and δ (O-C-O) was shifted to lower energies than in ZnC₂O₄·2H₂O spectra and was overlapped by ρ (H₂O) band

In FT-IR spectra of PbC₂O₄ were noted next vibrational bands: v_{as} (C-O) to 1608 (vs), v_s (C-O) and v_s (C-C) overlapped to 1380 (s), v_s (C-O) and δ (O-C-

O) overlapped to 1310, v_s (C-C) and δ (O-C-O) overlapped to 780 (s), and and δ_{ring} in range 465-480 (m) cm⁻¹.

Microscopic analysis SEM revealed crystalline structures characteristic for oxalates of zinc, cadmium and lead (Fig. 6). Cadmium oxalate found to have a triclinic structure (Arumugam D. et al, 2013). According to the SEM image, PbC₂O₄ was precipitated as micrometric rhombic plates with thickness of hundreds of nanometers. By thermal decomposition at 500°C of PbC₂O₄, a porous mass of lead oxide was obtained. Both pores and particles have sizes up to 300 nm. The obtained oxide has lamellar structure, the observed particles being composed from packed plates with thickness smaller than 50 nm.

Fig. 6 Microscopic analysis SEM of ZnC₂O₄·2H₂O, CdC₂O₄·3H₂O and PbC₂O₄

CONCLUSION

The recovery of zinc, cadmium and lead cations as oxalte were the best achieved to pH 5-5.7. Increasing of oxalic acid excess favoured the recovery of zinc cation and had minimal influence in recovery of cadmium and lead cations. While the recovery yield of Cd^{2+} and Pb^{2+} varied insignificantly with temperature, Zn^{2+} recovery increased with temperature and was maximal at 80°C. The recovery yields of all studied cations from solutions by concentrations under 1 g L⁻¹ (~3.0 mM) were very good, over 95%. The recovery yield in the same conditions increased in order $Zn^2 < Cd^{2+} < Pb^{2+}$. Using of NaHCO₃ as compared with NaOH reached the recovery yield of cations, even smaller concentrations than other studied before. Using of cheap reagents, obtaining high recovery yield independent of temperature and amount of reactants, especially for cadmium and lead cations are advantages of this method.

REFERENCES

- 1. Abd El-Moniem N.M., El-Sourougy M.R., Shaaban D.A.F., 2005, Heavy metal ions removal by chelating resin, Pigment & Resin Technology, 34 (6), pp. 332 339
- 2. Ahmad S., Khalid N., Daud M., Adsorption studies of lead on lateritic minerals from aqueous media, Separation Science and Technology 2002, Vol. 37(2), pp. 343 362
- Ahmed R., Yamin T., Ansari M.S. and Hasany S.M., 2006, Sorption behaviour of lead(II) ions onto Haro River Sand, Adsorption Science and Technology, 24(6), pp. 475-480
- Arumugam D., Krishnan A., 2013, Growth and study of cadmium tartrate oxalate single crystals by sol gel technique, Digest Journal of Nanomaterials and Biostructures, 8 (4), pp. 1835 – 1843
- 5. Burtică, G., Vlaicu, I., Negrea, A., Pode, R., Pode, V., Micu, D., 2000, Tratamentul efluenților reziduali, Ed.Politehnica, Timișoara, pp. 274-292
- Cordaş, E., Frenţiu, T., Ponta, M., Rusu, A.M., Fodor, A., 1998, Analiza prin spectrometrie atomică, Ed. Institutului Naţional de Optoelectronică-INOE, Bucureşti, pp. 191-200
- Deshpande A. S., Khollam Y. B., Patil A. J., Deshpande S. B., Potdar H. S., Date S. K., 2001, Improved chemical route for quantitative precipitation of lead zirconyl oxalate (PZO) leading to lead zirconate (PZ) powders, Materials Letters, 51, pp. 161-171
- 8. Feng J, Sun, Zheng Z, Zhang J, Li S, Tian Y, 2007, Treatment of tannery wastewater by electrocoagulation, Journal of Environmental Sciences, 19 (12), pp. 1409-1415
- Gavris G., Burtica G., Iovi A., 2005, Study of the cleaning process with cadmium ions from residual waters, Buletinul Stiintific al Universitatii Politehnica din Timisoara, Seria Chimia si ingineria mediului, 50964, 1-2, pp.163-165
- 10. Gavriş G., Cărăban A., Timoce M., 2006, Study of the cleaning process with cadmium ions from residual waters, (part two), Annals of the Oradea University, Fascicle of

Management and Technological Engineering, CD-Rom Edition, Ed. Universității din Oradea, V(XV), pp. 311-314

- Gavriş G., Stănăşel O., Pode R., Stoia M., Chiţac V, 2008, Study upon the recuperative purging of nickel and cobalt ions from residual solutions by means of chemical precipitation, Rev. Chim., 59, pp. 61-64
- Hagen T., Marshall, Wayne E., 2004, Alternative cation exchange media for metal ion removal, Proceedings of the Water Environment Federation, Watershed, 13, pp. 1418-1430
- Huang H., Cheng G., Chen L., Zhu X., Xu H., 2009, Lead (II) removal from aqueous solution by spent Agaricus bisporus: determination of optimum process condition using Taguchi method, Water, air, and soil pollution, 203, pp. 53-63
- Mahvi A. H., Naghipour D., Vaezi F., Nazmara S., 2005, Teawaste as An Adsorbent for Heavy Metal Removal from Industrial Wastewaters, American Journal of Applies Sciences, 2, pp. 372-375
- 15. Mancilla N., D'Antonio M. C., Gonzalez-Baro A. C., Baran E. J., 2009, Vibrational spectra of lead(II) oxalate, Journal of Raman Spectroscopy, 40 (12), pp. 2050-2052
- Marder L., Guilherme O, Sulzbach A. Bernarders M., 2003, Removal of cadmium and cyanide from aqueus solution through electrodialysis, Journal Brazilian Chemical Society, 14, pp. 427-442
- Matlock M.M., Howerton B.S., Atwood D.A., 2002, Chemical precipitation of lead from lead battery recycling plant wastewater, Industrial & engineering chemistry research, 41, pp. 1579–1582
- McLay W. J., Reinhard F. P., 2000, Waste minimization and recovery technologies, Metal Finishing, 98, pp. 817-850
- Parekh B.B., Vyas P.M., Vasant S. R., and Joshi M.J., 2008, Thermal, FT-IR and dielectric studies of gel grown sodium oxalate single crystals, Bulletin of Materials Science, 31, pp. 143-147
- Poon C. P., 1984, Removal of cadmium from wastewaters, Cellular and Molecular Life Scientes (C.M.L.S), 40(92), pp127-136
- Srinivasa, K.R., Sarani, D., Dash, P.K., Chaudhury, G., 2002, Treatment of wastewater containing copper, zinc, nickel and cobalt using Duolite ES-467, Journal. of Chemical Technology and Biotechnology, 77, pp. 1107-1113
- 22. Wladimirsky A., Palacios D., D'Antonio M. C., González-Baró A. C., Baran E. J., 2011, Vibrational spectra of the α -M^{II}C₂O₄·2H₂O oxalato complexes, with M^{II} = Co, Ni, Zn, The Journal of the Argentine Chemical Society, 98, pp. 71-77
- 23. Xiong Y., Kirkes L., Westfall T., Roselle R., 2013, Experimental determination of solubilities of lead oxalate (PbC₂O₄(cr)) in a NaCl medium to high ionic strengths, and the importance of lead oxalate in low temperature environments, Chemical Geology, 342, pp. 128–137