Vol. XXV, 2015

IMPACT OF AGROTECHNICAL AND ECOLOGICAL RISK FACTORS IN YIELD OF CEREALS

Vári Enikő*, Pepó Péter

*Institute of Crop Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen

Abstract

The study was carried out in the period between September 2010 and October 2013 at the experimental site of the University of Debrecen at Látókép (N: $47^{\circ}33'$, E: $21^{\circ}27'$) in the polyfactorial long-term experiment. The studied species were winter wheat and maize. The research focused on the effects of previous cropping and fertilizers, crop protection and irrigation on the amount of yield in three different cropyears. We wanted to find out how the yield were affected by the cropyear and agrotechnical factors.

In spite of the different years, the yields of maize and winter wheat were almost the same under the optimized agrotechnique. The maximum yields were 10.8 t ha⁻¹ in 2011, 8.6 t ha⁻¹ in 2012 and 9.1 t ha⁻¹ in 2013 in winter wheat, while the maximum yields of maize ranged from 13.1 to 14.6 t ha⁻¹ depending upon the year. The intensive crop production model results in better yield safety both in winter wheat and maize. From among the applied agrotechnical factors, fertilization had the strongest impact on the yield of winter wheat (59 %) and maize (45 %). However we found strong relationship between the crop rotation and the yield (winter wheat: 22 %, maize: 30 %).

Key words: cereals, yield, agrotechnical and ecological factors, variance component

INTRODUCTION

The productivity of field crops is determined primarily by the biological, genetic factors, secondly, by the ecological conditions and thirdly, by the agrotechnical factors. In the production technology of cereals, these factors should be harmonized.

Many aspects of agricultural production can be adversely affected by weather (Foxa et al., 1999). The importance of climate factors is decisive for wheat and maize yield. Crop fluctuations are principally caused by climate factors, especially the lack of precipitation (Radics 2003; Efeoğlu et al. 2009).

According to Pepó (2007) crop year and agrotechnical factors jointly determine the amount and stability of yield. The most important agrotechnical factors determining yield are crop rotation, fertilization, plant density and irrigation (Idikut and Kara, 2011). Higher yields can be reached in bicultures (soyabean – maize) than in monocultures (Qiang et al., 2010). Pepó (2006) found that the plant rotation has an outstanding importance amongst agricultural techniques. Although maize tolerates partial monocultures quite well, maize grown in a monoculture gave 1.3 t ha⁻¹ less yield in an average crop year, and 3 to 4 t ha⁻¹ less in a drought year

compared to growing in plant rotation. Nitrogen supply is almost as important in crop production. Based on Németh and Kádár (1999), the yield of maize produced is significantly affected by nitrogen supply of the plant, however, unreasonable amount on nitrogen will result in yield depression and unfavorable nitrogen accumulation. According to Pepó (2002), fertilization is one of the major technological elements of wheat production too, because it has a direct or indirect impact on all other technological elements. Pepó (2009) found that the optimum fertilizer doses vary between N₁₅₀₋₂₀₀+PK in biculture and N₅₀₋₁₅₀+PK in triculture depending upon the year and the water supply. Montemurro et al. (2007) did not detect differences in yields of winter wheat between the fertilizer treatments N₁₂₀+PK and N₁₈₀+PK.

MATERIAL AND METHOD

The study was carried out in the period between September 2010 and October 2013 at the experimental site of the University of Debrecen at Látókép (N: 47°33', E: 21°27') in the polyfactorial long-term experiment set up by Prof. Dr. László Ruzsányi in 1983 and supervised by Prof. Dr. Péter Pepó. The meteorological data are presented in *Figure 1*. The studied species were winter wheat and maize. The experimental plots were set up in a randomized block design in four repetitions, the plot size was 9.2 m x 5 m (46 m²).

Figure 1.: Meteorological parameters in the vegetation period of winter wheat and maize (Debrecen; 10.2010.- 09.2013.)

The tested wheat variety was GK Csillag. The first production technology element tested was the crop rotation where triculture (pea-wheat-maize) and biculture (wheat-maize) were set up. The second agrotechnical element was the fertilization (control, $N_{50}P_{35}K_{40}$, $N_{100}P_{70}K_{80}$,

 $N_{150}P_{105}K_{120}$, $N_{200}P_{140}K_{160}$). The third variable was the crop protection, where three models were set up (extensive, average, intensive).

The maize hybrid used in the experiment was Reseda (PR37M81; FAO 360). The first tested production technology element was the crop rotation where triculture (pea-wheat-maize), biculture (wheat-maize) and monoculture treatments were set up. The second agrotechnical element was the fertilization (control, $N_{60}P_{45}K_{45}$, $N_{120}P_{90}K_{90}$, $N_{180}P_{135}K_{135}$, $N_{240}P_{180}K_{180}$). The third variable was the irrigation where the treatments applied were non-irrigated (I1), irrigated to 50 % of the optimum water supply (I2) and irrigated to the optimum water supply (I3).

The statistical evaluation of the data was performed using the programs *Microsoft Excel 2013* and *SPPS for Windows 13.0*. The quantification of the agrotechnical elements' effects on the yield was done by variance component decomposition.

RESULTS AND DISSCUSIONS

Winter wheat

The yield of winter wheat was significantly influenced by the fertilization and the crop rotation in the years of 2011, 2012 and 2013, while crop protection did not have a significant effect.

Figure 2. The roles of fertilization, crop rotation, crop protection and the year in the yield of winter wheat (Debrecen, 2011-2013)

By the decomposition of variance components, we determined the percentage share of agrotechnical factors (crop rotation, crop protection, fertilization) in the yield of winter wheat (*Figure 2.*). As an average of the three years, the year, the crop rotation, the crop protection and the fertilization contributed to the yield by 9.04 %, 22.57 %, 9.62 % and 58.77 %, respectively.

Crop protection	Crop rotation Fertilization		2011	2012	2013
		control	1976	2274	1462
	Biculture	N ₅₀ +PK	3808	5078	3752
		N100+PK	5913	7005	5890
		N ₁₅₀ +PK	7175	7634	7528
		N200+PK	7749	7703	8019
Extensive	Triculture	control	6363	4683	4602
		N ₅₀ +PK	8297	6094	6427
		N100+PK	9352	7133	7901
		N150+PK	9163	7622	8118
		N200+PK	8900	7321	7907
		control	2046	2429	1558
	Biculture	N ₅₀ +PK	4197	5490	3960
		N100+PK	6520	7283	6205
		N150+PK	7742	8109	7910
Average		N200+PK	8423	8179	8317
Avelage		control	6570	5015	4811
	Triculture	N ₅₀ +PK	8812	6554	6954
		N100+PK	10050	7553	8465
		N150+PK	9830	8203	8660
		N200+PK	9642	8015	8241
	Biculture	control	2270	2515	1608
		N ₅₀ +PK	4624	5662	4185
		N100+PK	6876	7665	6671
		N150+PK	8100	8478	8363
Integivo		N200+PK	8850	8680	8779
Intesive	Triculture	control	6616	5219	4888
		N ₅₀ +PK	9263	6819	7215
		N100+PK	10852	7780	8751
		N150+PK	10468	8685	9196
		N200+PK	10209	8287	8722
LSI) 5% crop rotation	505	660	776	
LS	1051	461	689		
LSD	5% crop protectio	1113	816	1026	
1 1.00				0	1 .1 .

Effect of agrotechnical factors on winter wheat yield (Debrecen, 2011-2013)

Table 1.

In the different crop protection treatments, we found that higher yields were obtained in the stands treated once and twice than in the extensive model. In the biculture treatment, the maximum yields were obtained at the highest fertilization level (N_{200} +PK) in all three experimental years. In triculture, however, the maximum yield was obtained at lower fertilization levels, at the dosages of N_{100} +PK in 2011 and N_{150} +PK in 2012 and 2013. By applying the intensive crop protection model, the yield of winter wheat can be kept in the interval of 8.5-10.5 t ha⁻¹. In the extensive

model, the yields varied between 1.5 and 2.5 t ha⁻¹ (bi) and between 4.5 and 6.5 t ha⁻¹ (tri), consequently, they were considerably lower than in the case of the intensive technology (*Table 1*.).

<u>Maize</u>

The yield of maize was significantly influenced by the fertilization and the crop rotation. As an average of the three years, the year, the crop rotation, the irrigation and the fertilization had a 3.5 %, 29.8 %, 21.5 % and 45.2 % share in the yield, respectively (*Figure 3*).

Figure 3. The roles of fertilization, crop rotation, irrigation and the year in the yield of maize (Debrecen, 2011-2013)

Maize grown in monoculture gave 2003-2090 kg ha⁻¹ lower yields as an average of three years than maize grown in crop rotation. According to our studies, the optimum N+PK amount is influenced by several factors, on the one hand, by the year, on the other hand, by the applied agrotechnique (crop rotation, irrigation). Based on the three-year results, the highest yields were obtained at the fertilization levels of N180-240+PK in monoculture, N120-180+PK in biculture and N₆₀₋₁₂₀+PK in triculture. The yield increment due to irrigation was determined by the nature of the year. In all three experimental years, maize was irrigated several times, therefore, we could quantify the impact of irrigation, which resulted in a vield increment of 434-994 kg ha⁻¹ in 2011, 994-653 kg ha⁻¹ in 2012 and 1874-2664 kg ha⁻¹ in 2013. In the intensive model, the yield of maize was between 12.5-14.5 t ha⁻¹. In the extensive crop production model, the yield of maize varied between 4.5 and 7.0 t ha⁻¹ (in monoculture), 9.0 and 11.5 t ha⁻¹ (in biculture) and 9.0 and 11.0 t ha⁻¹ (in triculture), it was considerably lower than that in the intensive technology (Table 2.).

Irriga- Fertili- tion zation	2011			2012			2013			
	rettin-	Mono-	Bi-	Tri-	Mono-	Bi-	Tri-	Mono-	Bi-	Tri-
	Zation	culture								
I1	control	6226	8769	9602	6715	9389	9656	4862	9208	9029
	N ₆₀ +PK	8237	10143	11692	9571	10970	10932	7751	10812	10276
	N120+PK	10619	12428	12388	10297	11481	11955	9216	11046	10812
	N180+PK	11362	12670	12020	10641	11886	11710	9386	11947	10203
	N240+PK	11515	12271	11751	11289	11470	11303	9217	11719	9675
12	control	6370	8805	9961	6881	9820	9827	5488	10963	10219
	N ₆₀ +PK	8324	10842	11712	9742	11182	11427	8070	12527	12336
	N120+PK	11050	13304	12990	11043	11674	12504	10545	13469	13387
	N180+PK	11927	12990	12782	11284	12406	11670	11825	13942	13005
	N240+PK	12351	12180	12617	11910	11669	11347	11283	13176	13029
I3	control	6741	9075	10652	7028	10126	10140	5725	11614	10971
	N ₆₀ +PK	8659	12093	13420	9852	11980	12736	8667	13292	13492
	N120+PK	11887	14117	13086	11235	12996	13170	11974	13906	14676
	N180+PK	12704	13586	13148	11669	13083	12848	12821	14689	13750
	N240+PK	12035	12775	12621	12569	12610	12132	12648	14174	12719
LSD 5% crop rotation		678		531		738				
LSD 5% irrigation		737		565		790				
LSD 5% fertilization		636		522		956				

Effect of agrotechnical factors on maize yield (Debrecen, 2011-2013)

Table 2

CONCLUSIONS

The different agrotechnical factors (crop rotation, fertilization, crop rotation, irrigation) have a different efficacy in the production technology of winter wheat and maize which should be taken into consideration at their application in the practice. We have determined the capacity of the extensive and intensive crop production models of winter wheat and maize on chernozem soil in the Hajdúság. By applying the intensive crop model, the yields of winter wheat and maize can be kept at 8.5-10.5 t ha⁻¹ and 12.5-14.5 t ha⁻¹, respectively.

REFERENCES

- Efeoğlu B., Ekmekçi Y., Çiçek N., 2009, Physiological responses of three maize cultivars to droughtstress and recovery. South African Journal of Botany. 75.2, 443
- Foxa G., Turnera J., Gillespie T., 1999, The value of precipitation forecast information in winter wheat production. Agricultural and Forest Meteorology. 95.2, 99–111
- Idikut L., Kara S.N., 2011, The effects of previous plants and nitrogen rates on second crop corn, Turkish Journal of Field Crops, 16.2. 239-244
- Montemurro F., Convertini G., Ferri D., 2007, Nitrogen application in winter wheat grown in Mediterranean conditions: effects on nitrogen uptake, utilization efficiency, and soil nitrogen deficit, Journal of Plant Nutrition, 30. 10/12, 1681-1703
- Németh T., Kádár I., 1999, Nitrát bemosódásának vizsgálata és nitrogénmérlegek alakulása egy műtrágyázási tartamkísérletben, Növénytermelés, 48., 377-386
- Pepó P., 2002, Az őszi búza fajtaspecifikus tápanyagellátása csernozjom talajon, II. Növénytermesztési Tudományos Nap, 105-110
- Pepó P., 2006, Fejlesztési alternatívák a magyar kukoricatermesztésben, Gyakorlati Agrofórum Extra, 13., 7-11
- Pepó P., 2007, Evaluation of ecological conditions and agrotechnical elements in maize (Zea mays L.) production, Acta Agronomica Ovariensis, 49.: 2(1), 169-175
- Pepó P., 2009, Study of cropyear effects in cereal crop models. Analele Universitatii din Oradea, Fascicula: Protectia Mediului, 2009.14, 216-221
- Qiang M., WanTai Y., Hua Z., RuiJie W., 2010, Effects of long-term different fertilization on yield stability of maize. Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Symposium 3.1.2 Farm system and environment impacts. 74-77
- 11. Radics L., 2003, Szántóföldi növénytermesztés, Szaktudás Kiadó Ház, Budapest. 77-78.