THE INFLUENCE OF SOIL UPON PRODUCTION OF WINTER WHEAT IN THE REGION OF CAREI, SATU MARE COUNTY

Covaci Cristian Eugen*

*University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048, Oradea, Romania, e-mail: covacicristian@yahoo.com

Abstract

The present paper aims to analyze the behavior of wheat (Triticum aestivum) under varyng soils in the region of Carei, Satu Mare county, Romania in the agricultural years, 2017-2018, 2018-2019. The climatic years were excellent due to the fact that sowing was done late in autumn, and the emergence of the plants occured in early spring, that determined the specific reactions of the wheat varieties, expressed in the productions as well as in morphological characters. The average production of wheat was between 5400-6750 kg/ha.

Key words: winter wheat, soil, production

INTRODUCTION

Wheat is one of the oldest cultivated plants and the most important food plant. Wheat is an important food crop and is by for the most popular cereal in Europe, Romania benig among the six important producers.

Wheat flour bread is a basic food for the world's population, representing food for 35-40% of the world's population (Szekely et al., 2010).

Wheat is of great importance as a food, providing much of the carbohydrates and proteins needed to man and more than half of the calories consumed by mankind. The forms under which wheat is used in human food are very diverse, the most widespread being bread, followed by pasta and pastry (Szekely et al., 2010).

Wheat quality is not constant from one year to another, from one field to another, due to variety of varieties (genetic potential) and climate change yearly. Wheat production and quality indices are influenced by technological factors, variety, meteorological conditions and interactions between them (Racz et al., 2013).

Nowadays, not only yield amount but also the quality of the produced grain is important, because the quality of the grains determines their direction of use. That is why farmers are trying to get high grain yields in line with food (accepted for bread baking) quality, while minimise production costs and using environmentally friendly technologies.

Optimal nutrient provision is an important factor to get high yield with grain quality. Nitrogen is one of the most important elements of plant

nutrition, which often to a great extent determines not only wheat yield level, but especially grain baking quality. It is also one of the most mobile plant nutrients in the soil.

MATERIAL AND METHOD

The present paper aims to analyze the behaviour of eight winter wheat varieties (Glosa, Falado, Akteur, Combin, Sorrial, Exotic, Renan, Laurenzio) in the region of Carei, Satu Mare county, on the basis of a comparative crop test. The observations were made in crop years 2017-2018, 2018-2019, the plot is of 8 ha each type of wheat was sowed on 1 ha in each year of the study the wheat varietes were adapted to the specific climatic conditions with a normal fetilization without excesses.

The experimental soils were: Cambic chernozem, poorly gleissed, rich in humus and with a normal content in total nitrogen, low in phoshorus and mediocre in potassium. The other soil types here a typical clay soil with normal contents of clay and humus, histosol that was rich in organic content, so it was a nutrient rich soil. There were other two types of soil: rendzinas and loam soil that were cultivated in this region. The statistical processing of the production results was made by veriance analysis. The variance analysis reneaded differences betwen the eight varieties studied, the different soil types and the climatic conditions having significant effects on the behaviour of studied wheat varieties.

RESULTS AND DISCUSSION

In the experimental years 2017-2018, 2018-2019, the production differences between the studied varieties were due to a significant extent both to the genetic potential of the varieties and the location conditions the leve of fertilization, the level of applied technologies and last but not least the types of soil. Grain weights (production), had a mean variation so there are significant differences between the 8 variants studied.

Table 1

Nr.	Variant	Type of soil / Production (kg/ha)					
crt	v ai lällt	chernozem	histosol	loam	rendzinas	clay	
1	Glosa	6750	6010	5800	6220	5710	
2	Falado	6420	5750	5650	6110	5680	
3	Akteur	6310	5600	5570	6070	5590	
4	Combin	6580	5930	5640	6120	5670	
5	Sorrial	6120	5590	5510	5970	5400	
6	Exotic	6230	5840	5620	5850	5450	
7	Renan	6270	5760	5490	5910	5550	
8	Laurenzio	6360	5590	5580	5980	5610	

Grain yields obtained from the 8 wheat varieties in the years 2017-2018

Analyzing the efficacy of typical chernozem, we obtained the highest efficacy, this was followed by histosol, loam soil, rendzinas and clay soil.

So the wheat crops are linked to all these mentioned before.

From Table 1 where we analyzed the influence and Table 2 of soil types over the wheat production, it was found that significant differences were achieved on typical chernozem in comparison with the other soil types.

Table 2

Nr.	Variant	Type of soil / Production (kg/ha)						
crt		chernozem	histosol	loam	rendzinas	clay		
1	Glosa	6650	6000	5700	6120	5610		
2	Falado	6310	5650	5550	6200	5560		
3	Akteur	6220	5400	5400	5910	5490		
4	Combin	6480	5730	5540	6010	5590		
5	Sorrial	6020	5490	5410	5730	5410		
6	Exotic	6130	5740	5570	5580	5410		
7	Renan	6160	5560	5410	5670	5440		
8	Laurenzio	6220	5490	5430	5710	5520		

Grain yields obtained from the 8 wheat varieties in the years 2018-2019

Regarding the production results on each studied type of soil, significant production increases were obtained in the variant Glosa on chernozem soil and there is also a slight diference in production on the other soil types. The prospective line of winter wheat oscillated between 6650 kg/ha in the Glosa perspective wheat variety and Exotic perspective wheat variety.

From the all soil types, the best efficacy was obtained by Glosa on cambic chernozem soil followed by the other types as you can see in the tables.

CONCLUSIONS

In the agricultural year 2017-2018, 2018-2019, climatically exceptional, the sowing took place in late autumn, late November and the emergence of the plants was made in early spring, which determined the specific reactions of the wheat varieties, expressed in the produced production, as well as morphological characters.

Research was carried out on five soil types in wheat crops. The experiments were located in Satu-Mare county, Carei region on a basis of comparative crop test.

The varieties under study differently reacted to the environmental conditions, the climatic conditions and the types of soil they were sown in each year of the study. Results show a very significant yield increase of certain types of wheat (Glosa and Combin) in some types of soils and also the favourable climatic conditions of these two years.

REFERENCES

- 1. Boeriu I., Eustatiu M., 1973, Cultua graului. Ed Ceres din Bucuresti
- 2. Borcean I., Borcean A., David G., 2002, Cultura si protectia plantelor. Ed. Agroprint din Timisoara
- 3. Ceapoiu N., 1984, Graul. Ed. Academiei din Bucuresti
- 4. David G., 2003, Tehnologia plantelor de camp. Ed. Eurobit din Timisoara
- 5. Domuta C., 2005, Agrotehnica terenurilor in panta nord-vestul Romaniei . Ed. Universitatii din Oradea
- 6. Domuta C., 2006, Agrotehnica diferentiata. Ed. Universitatii din Oradea
- 7. Laura Paulette, 2008–Pedologie, Editura Todesco, Cluj Napoca
- 8. Muntean L. S., Roman G. V., Borcean I., Axinte M., 2003, Fitotehnie. Ed. Ion Ionescu de la Brad din Iasi
- 9. Oancea I., 2012, Tehnologii agricole performante. Ed. Ceres din Bucuresti
- 10. Povara R., 2001, Riscul meteorologic in agricultura. Graul de toamna. Ed. Economica din Bucuresti
- Racz I., Has I., Moldovan V. Kadar R., Ceclan OA., 2014, Stability evaluation of yield and its main components in a set of winter varieties, Analele I.N.C.D.A. Fundulea
- 12. Rusu T., 2005, Agrotehnica. Ed. Risoprint din Cluj-Napoca
- 13. Saulescu N., 1984, Ameliorarea graului. Ed. Academiei din Bucuresti
- 14. Szekely E., Kadar R., Moldovan V., Has I., 2010, Studiul variabilitatii unor insusiri morfo fiziologice si de calitate in cadrul colectiei de grau de toamna. Analele I.N.C.D.A. Fundulea
- Zahan P., Bandici G., 1999, Agrotehnica solurilor acide din nord-vestul Romaniei, Ed. Universitatii din Oradea
- 16. *** European Comission, 2005–Soil Atlas of Europe. European Soil Bureau Network, Office for oficialPublications of the European Communities, Luxemburg